
applications of Rewriting Logic
in BIOLOGY

III
Transformation to Petri nets and

interactive Visualization

Carolyn Talcott
SRI International

July 2007

Questions???

PLAN

Petri Net representation

The IOP-IMaude Interaction Framework

Intro to the Pathway Logic Assistant (PLA)

Why Petri Nets?

Simple, easy to visualize representation as graphs

Directly represents concurrency and dependencies

Efficient analysis, especially for 1-safe nets (at most on
mark on any place -- conservation of matter)

Graph-based algorithms for analyzing structure, finding
`modules’

Also represented in Maude

Main Insight

Cells and Dishes can be represented as sets of
occurrences (aka places, things tagged with location)

Egf on the outside < Egf, out >

Egfr in the membrane < EgfR, CLm >

Activated Egfr in the membrane < [EgfR - act], CLm >

Rules are then transitions
< Egf, out > < EgfR, CLm > => < [Egf - bound], CLo > < [EgfR-act], CLm >

Objective: a Petri net representation Pn(R,D) of a model with
rules R and dish (initial state) D, that gives the right answers
to queries.

Problem
A Petri net has a finite set of places and transitions
Maude rules have variables with unbounded range.

Solution
Consider only rule instances possible using values declared
in components.maude

Restrict occurrences to those appearing in some rule
instance

Realizing the Insight

Petri Net Representation: OverView

 Specification of Petri Nets
 occurrences and transitions
 functions for manipulating Petri Nets

 Converting Maude models to Petri Nets
 Rules --> Transition Schemes
 Components + Transition Schemes --> Transition list

(knowledge base)

 Computing with Petri net models

 Petri Nets:
Occurrences and Transitions

(See pl-aux.maude modules DISH-OPS, PETRI)

Occurrences I
Sorts and constructors:
 sort Loc . subsort LocName < Loc .
 op Out : -> Loc .
 sorts Occ Occs *** multiset of Occ, id: none
 op <_,_> : Thing Loc -> Occ [ctor] .

Converting dishes (and soups) to occurrence sets.
 pl2occs(th-1...th-k [ct | { loc | lt-1 .. lt-m } ...]) =>
 < th-1,Out > ... < th-k,Out >
 < lt-1,loc > ... < lt-m,loc > ...

Example:
 rasDish := PD(Egf [HMEC | {CLo | empty }
 {CLm | EgfR PIP2 }
 {CLi | [Hras - GDP] Src }
 {CLc | Gab1 Grb2 Pi3k Plcg Sos1 }]) .

 rasOccs = pl2occs(rasDish) =
 < Egf,Out > < EgfR,CLm > < PIP2,CLm >
 < Src,CLi > < [Hras - GDP],CLi >
 < Gab1,CLc > < Grb2,CLc > < Pi3k,CLc > < Plcg,CLc > < Sos1,CLc >

Occurrences II

Set operations on occurrences
 member(occ, occs)
 returns occ if occ is present in occs and none ow

 Odiff(occs0,occs1)
 returns the elements of occs0 not in occs1

 Osame(occs0,occs1)
 returns the intersection of occs0 and occs1

PNets i

 sort PNTrans .
 op pnTrans : Qid Occs Occs Occs -> PNTrans [ctor] .
 **** pnTrans(rid,inOccs,outOccs,bothOccs)

Rule1 Transition:
pnTrans('1.EgfR.act,
 < Egf, Out > < EgfR,CLm >,
 <[Egf - bound],CLo >
 <[EgfR - ct],CLm >,
 none)

Sorts and Constructors

Rule5 Transition:
pnTrans('5.Grb2.reloc,
 < Grb2,CLc >,
 <[Grb2 - reloc],CLi >,
 <[EgfR - act],CLm >)

rl[1.EgfR.on]: ?ErbB1L:ErbB1L
 [CellType:CellType | ct
 {CLo | clo }
 {CLm | clm EgfR }]
 =>
 [CellType:CellType | ct
 {CLo | clo [?ErbB1L:ErbB1L - bound] }
 {CLm | clm [EgfR - act] }] .

rl[5.Grb2.reloc]:
 {CLm | clm [EgfR - act] }
 {CLi | cli }
 {CLc | clc Grb2 }
 =>
 {CLm | clm [EgfR - act] }
 {CLi | cli [Grb2 - reloc] }
 {CLc | clc } .

PNets ii

 sort PNTransList .
 subsort PNTrans < PNTransList .
 op nil : -> PNTransList [ctor] .
 op __ : PNTransList PNTransList -> PNTransList
 [ctor assoc id: nil] .

 sort PNet .
 op pnet : PNTransList Occs -> PNet [ctor] .

 rasNet = pnet(rasPntl,rasOccs)

More Sorts and Constructors

PNets IIi

Operations on transition lists
 len(pntl) is the length of pntl

 getPre(n,pntl) is the prefix of pntl of length n
 getPost(n,pntl) is the suffix of pntl after the first n
 pntl = getPre(n,pntl) getPost(n,pntl)

 unionTrans(pntl0,pntl1)
 concatenates pntl1 to pntl0 removing duplicates

 intersectTrans(pntl0,pntl1)-- the transitions in both lists

 Petri Nets:
functions for transforming

(See pl-aux.maude modules RELEVANT

PNets IIi
Auxiliary sort for tupling results
 sort PNTL3 . **** Transitionlist plus 3 Occ sets
 op `{_,_,_,_`} : PNTransList Occs Occs Occs -> PNTL3 [ctor] .

Selecting tuple components
 op pntls-0 : PNTL3 -> PNTransList .
 ops pntls-1 pntls-2 pntls-3 : PNTL3 -> Occs .

Forward Collection
 fwdCollect(pntl,initOccs) = {pntl',ioccs',unrch,rch}
where
 pntl’ is the sublist of transitions in pntl reachable from initOccs

 pnTrans(id,ioccs,ooccs,boccs) reachable if Odiff(ioccs boccs,rch)

 initOccs are contained in rch
 ooccs are contained in rch if pnTrans(id,ioccs,ooccs,boccs) reachable

 ioccs’ = Osame(initOccs,rch)
 unrch’ = Odiff(initOccs,rch)

PNets IV

Backward Collection:
 bwdCollect(pntl,goals) = pntl'
where
 pntl’ is the sublist of transitions in pntl that might contribute to goals

 pnTrans(id,ioccs,ooccs,boccs) might contribute
 if Osame(ooccs,goccs)=/= none

 goals are contained in goccs
 ioccs boccs are contained in goccs
 if pnTrans(id,ioccs,ooccs,boccs) might contribute

Pruning a net:
 omitRules(pntl,rids)removes transitions from pntl with identifier in rids
 avoidOccs(pntl, aviods) removes pnTrans(id,ioccs,ooccs,boccs)
 if Osame(ioccs ooccs boccs, avoids) =/= none

 Converting Maude Models to
Petri Nets

Make the transition knowledge base TKB(R) for rules R
(this is a meta-level operation)

convert each rule to occurrence form

make a transition for each substitution for the
component variables

For Rules R and dish D, P(R,D) is the transition list
computed by forward collection from TKB(R) together
with the occurrence form of D.

Transformation Idea

convert each rule to occurrence form
rl[1.EgfR.on]: ?ErbB1L:ErbB1L
 [CellType:CellType | ct {CLo | clo} {CLm | clm EgfR}]
 =>
 [CellType:CellType | ct
 {CLo | clo [?ErbB1L:ErbB1L - bound]}
 {CLm | clm [EgfR - act]}] .

becomes
rl[PN1.EgfR.on]:
 < ?ErbB1L:ErbB1L, out > < EgfR, CLm >
 =>
 < [?ErbB1L:ErbB1L - bound], CLo > < [EgfR-act], CLm > .

there are two substitutions binding ?ErbB1L:ErbB1L to Egf or Tgfa
giving two PNTransitions

 pnTrans('1.EgfR.act,< Egf, Out > < EgfR,CLm >,
 <[Egf - bound],CLo > <[EgfR - act],CLm >,none)
 pnTrans('1.EgfR.act#1,< EgfR,CLm > < Tgfa,Out >,
 <[EgfR - act],CLm > <[Tgfa - bound],CLo >,none)

Transformation Example

rasNet Model as Petri Net

fwdCollect(smallKB,
 pl2occs(rasDish))

R -the SmallKB rule set

smallKB is TKB(R) Pi3k-CLc

8

Gab1-Yphos-CLi

Grb2-CLc

5

PIP2-CLm

9

7

Egf-bound-CLo

Grb2-Yphos-CLi

EgfR-CLm

1

Grb2-reloc-CLi

PIP3-CLm

12

Sos1-CLc

6

Hras-GTP-CLi

13

Sos1-reloc-CLi

4

Egf-Out

Pi3k-act-CLi

Gab1-CLc

10

Plcg-act-CLi

EgfR-act-CLm

DAG-CLm

Src-CLiHras-GDP-CLi

IP3-CLc

Plcg-CLc

Executing pnet transitions in Maude

 op ps : PNTransList Occs -> State [ctor] .
 op initPs : PNet -> State .
 eq initPs(pnet(pntl:PNTransList,i:Occs)) = ps(pntl:PNTransList,i:Occs) .
 crl[psStep]:
 ps(pntl:PNTransList, i:Occs b:Occs occs:Occs) =>
 ps(pntl:PNTransList, o:Occs b:Occs occs:Occs)
 if pntl:PNTransList :=
 pntl0:PNTransList pnTrans(rid:Qid,i:Occs,o:Occs,b:Occs)
 pntl1:PNTransList .

 A pnet state carries along its transition list

 op psp : PNTransList Occs QidList -> State [ctor] .
 op initPsp : PNet -> State .
 eq initPsp(pnet(pntl:PNTransList,i:Occs)) =
 psp(pntl:PNTransList,i:Occs,nil) .
 crl[psStep]:
 psp(pntl:PNTransList, i:Occs b:Occs occs:Occs, rids:QidList) =>
 ps-(pntl:PNTransList, o:Occs b:Occs occs:Occs, rids:QidList rid:Qid)
 if pntl:PNTransList :=
 pntl0:PNTransList pnTrans(rid:Qid,i:Occs,o:Occs,b:Occs)
 pntl1:PNTransList .

 It may also carries along a history of rules fired

Computations

For a set of rules R, a sequence

 R |- D0 -rl1-> ... -rlk-> Dk

is computation from dish D0 to dish Dk via rules rl1 ... rlk if
Di-1 rewrites to Di by an application of rule rli

For a PNTransList P, a sequence

 P |- O0 -pnt0-> ...-pntk-> Ok

is computation from occurrences O0 to Ok via transitions
pnt1 ... pntk if ps(P,Oi-1) rewrites to ps(P,Oi) by a step using
transition pnti

Petri Net Correctness

Theorem: If P = TKB(R,C), D0 is a dish over C, and O0 is the
corresponding occurrence set then there is a 1-1
correspondence between computations from D0 and those
from O0

R |- D0 -rl1-> ... -rlk-> Dk <-> P |- O0 -pnt0-> ...-pntk-> Ok

where O0 = pl2occs(D0), and pnti is an instance of the
occurrences form of rli

A Simple Query Language

Given a Pnet state ps(P,O) there are two types of query

subnet

findPath

For each type there are three parameters (requirements)

G: a goal set---occurrences required to be present at the end of a path

A: an avoid set---occurrences that must not appear in any transition fired

H: as list of identifiers of transitions that must not be fired

findPath returns a pathway (transition list) generating a computation
satisfying the requiremments.

subnet returns a subnet containing all (minimal) such pathways.

PNet Query Functions

Computing a subnet

 **** ioccs goals avoids hides
 op relSubnet : PNTransList Occs Occs Occs QidList -> PNTL3 .

 ceq relSubnet(pntl,ioccs,goals,avoids,rids) =
 {fpntl,ioccs',unused,used}
 if pntl' := avoidOccs(omitRules(pntl,rids),avoids)
 /\ bpntl := (if goals == none
 then pntl'
 else bwdCollect(pntl',goals) fi)
 /\ {fpntl,ioccs',unused,used} :=
 fwdCollect(bpntl,Odiff(ioccs, avoids)) .

Finding a path -- invoke a model-checker asserting goals are unreachable
 from initial occurrences using avoidOccs(omitRules(pntl,rids),avoids)

Subnet Adequacy

Given a Pnet state ps(P,O) , goals G, avoids A and hides H,

 findPath(ps(P,O),G,A,H) succeeds iff

 findPath(relSubnet(ps(P,O),G,A,H),G,none,nil) does

subnetting

reduces the search space for finding a path

simplifies the network to be understood by a biologist

fwdback
fwd
back

Example Collection Results

PLA

Provides a means to interact with a PL model

Manages multiple representations

Maude module (logical representation)
PetriNet (process representation for efficient query)
Graph (for interactive visualization)

 Exports Representations to other tools

 Lola (and SAL model checkers)
 Dot -- graph layout
 JLambda -- interactive visualization
 SBML

PLA : OVERVIEW

IOP

IMaude -- actors in Maude

JLambda

 PLA = IMaudePLA +IOP JLambdPLA

Interoperability Platform
IOP

IOP Aims/Motivations

 Long term
 infrastructure for simple message passing tool
interoperation

 Short term---giving Maude interactive capabilities
 communication with other tools, including itself
 accessing web resources
 manipulating files
 using visualization tools
 accessing the underlying OS

 Two sides to Maude interoperation:
 The world must be prepared to talk to Maude (IOP)
 Maude must be prepared to talk to the world (IMaude)

IOP Design

Based on the actor model of distributed computation.

 IOP consists of a pool of actors, that interact via
asynchronous message passing.

 Actors can create other actors

 An actor consists of one or more (UNIX style) processes

 An actors behavior may described in any programming
language, possibly using a wrapper to patch it into the mail
system.

IOP Architecture

Architecturally IOP consists of
 A dynamic pool of actors
 A main that configures the system
 A registry that keeps track of known actors and maintains the lines
of communication
 A GUI front end (the user as an actor)

registry

an actor

an actor

a two process actor

GUI

IMaudE

IMaude I

 IMaude extends Maude to allow:
 interactions with the environment to be interleaved with rewriting
 internal state to persist across interactions

 IMaude begins with the LOOP-MODE module of core Maude.
 LOOP-MODE provides a basic read-eval-print loop.

A LOOP-MODE system has the form [inQ,S,outQ]

 inQ is a list of quoted identifiers read from standard input, and
parsed by the Maude tokenizer.

 outQ is a list of quoted identifiers channeled to standard output.
 S is the system state, rewritten using application specific rules.

IMaude Ii

 A PLAIMaude state has the form
st(control,wait4s,requestQ,eset,log)

The control component indicates what the current IMaude actor task
The wait4s component contains handlers for incoming messages

(listeners, continuations, ...)
The requestQ component is a queue of pending tasks
The eset component is a local environment containing a set of entries

of the form
 e(etype,args,notes,evalue)

The log component is a place to record success or failure information
-- for debugging

The Display Petri Request

To build the pnet for a predefined dish and display it

(seq
 (predefDish SmallKB graphics2d rasDish dish0 rasDish)
 (dish2pnet SmallKB dish0 pnet1)
 (pnet2graph SmallKB pnet1 graph2)
 (defineGraph graphics2d graph2)
 (startListener graph2 graphreq graphics2d)
 (showGraph graphics2d graph2)
)

Dish2Pnet

**** can the request be execute now?
eq isReq('dish2pnet) = true .
 eq enabled(wait4s,
 req('dish2pnet,ql(kbname dname pname toks),reqQ))
 = true .

**** update the entry set with the pnet for the dish `dname’
**** `pname’ is the name of the new pnet
 rl[dish2pnet]:
 [nil,
 st(processing(req('dish2pnet, ql(kbname dname pname toks),
 reqQ')), **** what to do with the pnet
 wait4s,reqQ,es,log),
 outQ]
 =>
 [nil,
 st(ready, wait4s, (reqQ reqQ'),
 dish2pnet(es,kbname,dname,pname), log),
 outQ] .

Dish2pnet entry update function

 op dish2pnet : ESet Qid Qid Qid -> ESet .

 ceq dish2pnet(es,kbname,dname,pname) =
**** store the new entry
 addEntry(es,'tval,'pnet pname, pnotes,
 tm(modname,'pnet[pntlT',ioccsT]))
**** get the dish from the entry set
 if tm(modname,occsT) :=
 getVal(es,'tval,'dish dname,tm('BOOL,'true.Bool))
**** get the knowlegebase transition list from the entry set
 /\ tm(modname',pntlT) :=
 getVal(es,'tval, 'tkb kbname,tm('BOOL,'true.Bool))
**** do the forward collection
 /\ '`{_`,_`,_`,_`}[pntlT',ioccsT,uoccsT,roccsT] :=
 getTerm(metaReduce([modname],'fwdCollect[pntlT,occsT]))

 /\ pnotes := (("source" := ql('dishnet dname)),
	

 	

 	

 	

 	

 ("rchOccs" := tm(modname, roccsT)),
	

 	

 	

 	

 	

 ("unusedOccs" := tm(modname, uoccsT)),
	

 	

 	

 	

 	

 ("dishname" := ql(dname user-dname)),
	

 	

 	

 	

 	

 ("kbname" := ql(kbname))) .

JLAMBDA

JLambda is a scheme like interpreted language designed
to make programming interactive graphics less painful

let, if, closures/apply ... define

Construct and maniplate objects in any known Java class
Special purpose classes:

Identifiable -- associating objects to strings for
external access (actor names)

Attributable -- add new fields/methods dynamically

Glyph -- interactive graphics -- render and react

Graph -- interactive nodes, layout
Closure<X> for abstract class X -- listeners, actions ...

Interactive Graphs

 (define makeGraph (graph)
 (let ((node1 (object ("g2d.graph.IOPNode" "node1")))
 (node2 (object ("g2d.graph.IOPNode" "node2")))
 (edge1 (object ("g2d.graph.IOPEdge" node1 node2)))
)
 (seq
 (invoke node1
 "setMouseAction"
 java.awt.event.MouseEvent.MOUSE_CLICKED
 (lambda (self e)
 (invoke java.lang.System.err "println" e)))
 (invoke graph "addNode" node1)
 (invoke graph "addNode" node2)
 (invoke graph "addEdge" edge1))))

Closures As Actions
(define mkAction (label tip closure)
 (object ("g2d.closure.ClosureAbstractAction"
 label
	

 	

 	

 	

 (object null) ; icon
	

 	

 	

 	

 tip
 (object null) ; accelerator
	

 	

 	

 	

 (object null) ; mnemonic
	

 	

 	

 	

 closure))) ; action closure

;; adding a button to the toolbar
(invoke toolbar "prepend"
 (object ("pla.toolbar.ToolButton"
 (apply mkAction "FindPath" "find a path to goals"
 (lambda (self event)(apply pathRequest graph))))))

;; sending a request to maude from a graph
;; (received by the graph listener)
(define pathRequest (graph)
 (sinvoke "g2d.util.ActorMsg" "send"
 "maude"
 (invoke graph "getUID")
 (concat "displayPath1" " " (apply mkStatusString graph))))

;; mkStatusString gathers goals, avoids, hides information

 Navigation -- find nodes, rules, ends of arrows

 Dish editing and petri net generation/visualization

 Queries -- path/subnet

 Comparing any two graphs/nets

 Exploring -- incremental generation of a subnet

In context view

THE PLA VIEWER

 next Session pla LIVE

