# Challenges in formal reasoning about signaling networks

Carolyn Talcott Simmons August 2015

#### Plan

- What models are we talking about?
- Pathway Logic in a nutshell
- Challenges

- What questions do you want the model answer?
- What can you observe/measure?
- What does that mean?
- Explain it to a computer!
  - Need a formal representation system

#### Formal Modeling Methodology



#### Symbolic analysis -- answering questions

- Forward collection -- upper bound on possible states
- Backward collection -- initial states leading to states of interest
- Search -- for (symbolic) state of interest
- Model checking -- do all executions satisfy  $\phi$ , find counter example
- Constraint solving -- steady state analysis



#### Pathway Logic

#### Executable models of cellular processes

http://pl.csl.sri.com

### Pathway Logic (PL) Goals

- Understanding how cells work
- Formal models of biomolecular processes that
  - capture biologist intuitions
  - can be executed
- Tools to
  - organize and analyze experimental findings
  - carry out gedanken experiments
  - discover/assemble execution pathways
- New insights into the inner workings of a cell.
- A new kind of review



#### ErbB network cartoon - biologists review model



Yarden and Sliwkowski, Nat. Rev. Mol. Cell Biol. 2: 127-137, 2001

#### PL Egf dish - an executable review model



#### PL from 1k feet

Key components

- Representation system
  - controlled vocabulary
  - datums (formalized experimental results)
  - rules
- Curated datum knowledge base (KB) and search tool
- Evidence based rule networks
  - STM, Protease, Mycolate, GlycoSTM
- Executable models
  - generated by specifying initial conditions and constraints
  - query using formal reasoning techniques
- Visualize and browse subnets



#### Example signal propagation (using Petri Nets)



Sos1Dish =rule1=> Sos1Dish1 =rule5=> Sos1Dish2 =rule13=> Sos1Dish3

Ovals are occurrences -- biomolecules in locations (aka places). Dark ovals are present in the current state (marked). Squares are rules (aka transitions). Dashed edges connect components that are not changed.

#### Rule Knowledge Base (RKB) — A Rewrite Theory

- Rewrite rules describe local change and specify required context rl[529.Hras.irt.Egf]:
- < Egf : [EgfR Yphos], EgfRC > < [gab:GabS Yphos], EgfRC >
- < [hrasgef:HrasGEF Yphos], EgfRC > < Pi3k, EgfRC > < [Shp2 Yphos], EgfRC >
- < [Hras GDP], CLi >

```
=>
```

- < Egf : [EgfR Yphos], EgfRC > < [gab:GabS Yphos], EgfRC >
- < [hrasgef:HrasGEF Yphos], EgfRC > < Pi3k, EgfRC > < [Shp2 Yphos], EgfRC >

```
< [Hras - GTP], CLi >
```

```
*** ~/evidence/Egf-Evidence/Hras.irt.Egf.529.txt
```

- Symbolic rules represent a family of rules using sorted variables
- EgfRC is the location of the Egf Receptor complex, it is populated in response to the Egf signal. CLi is the membrane interior
- gab:GabS is a variable standing for Gab1 or Gab2, hrasgef:HrasGEF is a variable for any of several HrasGEFs (enzymes to exchange GDP for GTP)

#### Where do rules come from?

They are inferred from experimental findings.

These are collected using a formal data structure call datums



#### The Elements of a Datum

#### What can be done with an executable RKB?

- Generate a model, for example, of response to some stimulus
  - Define initial state -- cell components and additions -- experimental setup
  - Forward collection gives a network of all the possibly reachable rules
- The Signal Transduction Model (STM) RKB comes with > 30 models of response (of a resting cell) to different treatments (Egf,Insulin,Tnfa,Tgfb, Lps (bug bit), Serum, ....)
- From a model you can
  - Backwards collection generates a subnet relevant to a specific outcome (Erk activated in the nucleus)
  - find an execution path model-checking the assertion that no path exists
  - carryout in silico knockouts
  - compare nets
  - explore connections up/down stream

## The subnet of the Egf model for activating (GTPing) **Hras**. (Represented as a Petri net.)





#### Comparing two pathways

#### Symbolic analysis -- answering global questions

- RMP -- the set of all reaction minimal paths from an initial state to a given set of goals
- From this set we can compute
  - Essential transitions reactions that are in all pathways to an output.
  - Used places biochemical species that are in at least one pathway.
  - Knockouts biochemical species that are in all pathways to an output.
  - Multisignal cellular responses at least one pathway to an output has more than one stimulus.
- In the Hras subnet
  - 6 execution pathways (3 using Sos1, 3 using RasGrp3 GEFs)
  - 20 double knockouts (from 4 protein pairs)

#### Challenges

- Collecting data
- Data to Knowledge
- Knowledge to Model
- Dynamics

Automating all of this!

#### Collecting Data

- Finding sources
  - abstracts are NOT sufficient sources for indexing / search
  - inspiring Biologists to do the missing experiment
- Extracting datums (semi) automatically
  - Naming things
  - What was measured, under what conditions
  - Resolving ambiguities

#### Data to Kapta:

Assembling diverse formal factletts into signaling rules

- Each datum is a partial view constraint solving can integrate views
- Resolving apparent inconsistencies
- Resolving different experimental conditions
- Interpreting variants
  - mutations, deletions, fragments
  - Why was the perturbation chosen? How does that change the meaning?
- Combining experiments
  - activity in a test-tube + activity in a cell

#### KB to Model

- Rules may not connect
  - Different levels of detail
  - Location location experiments rarely give location information :-(
  - Activity vs modification state
- What does a give cell type/state express the initial state
  - It is rare that cells are well characterized

#### Background knowledge!!!

- Notions such as kinase, Yphos more specific than phos ....
- Needed in all steps
- The is a lot of it
  - some in databases, some in books
  - can it be relied upon computational vs experimental
- Needs to be curated into computable form.
- Need a well-defined formal representation that can be used by

#### Dynamics

- PL models capture before/after but not how much or how fast.
- Data for real kinetics is hard to find
- Cells aren't well stirred solutions
- What really matters depends on the question being asked
- What about symbolic quantitative reasoning?
  - using variables and constraints among them
  - what are the right abstractions
  - what are relative rates of processes
  - characterizing effects of competition between processes
- We need biological reasoning principles (which can then be formalized and helpful tools built)

#### Questions ???

#### Controlled vocabulary

```
sort HrasSort .
subsort HrasSort < RasS < BProtein .
```

```
<u>op Hras : -> HrasSort [</u>ctor metadata ( (spnumber P01112) (hugosym HRAS)
(synonyms "GTPase HRas"
"Transforming protein p21"
"v-Ha-ras Harvey rat sarcoma viral oncogene homolog"
"Harvey murine sarcoma virus oncogene"
"H-Ras-1"
"c-H-ras"
"HRAS1"
"RASH1"
"RASH1"
"RASH_HUMAN"))].
```

op Rass : -> RasS [ctor metadata ( (category Family) (members Hras Kras Nras))] .

```
<u>op Pi3k : -> Composite</u> [ctor metadata "(
(subunits Pik3cs Pik3rs)
(comment "PI3 Kinase is a heterodimer of:"
"a p110 catalytic subunit: Pik3ca, Pik3cb, Pik3cd or Pik3cg"
"a p85 regulatory subunit: Pik3r1, Pik3r2, or Pik3r3"))].
```