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Abstract. Pathway Logic (PL) is a general system for modeling signal
transduction and other cellular processes with the objective of under-
standing how cells work. Each specific model system builds on a knowl-
edge base of rules formalizing local process steps such as post transla-
tional modification. The Pathway Logic Assistant (PLA) is a collection
of visualization and reasoning tools that allow users to derive specific ex-
ecutable models by specifying of an initial state. The resulting network of
rule instances describes possible behaviors of the modelled system. Sub-
nets and pathways can then be computed (they are not hard wired) by
specifying states to reach and/or to avoid. The STM knowledge base is a
curated collection of signal transduction rules supported by experimen-
tal evidence. In this paper we describe methods for using the PL STM
knowledge base and the PLA tools to explain observed perturbations of
signaling pathways when cells are treated with drugs targeting specific
activities or protein states. We also explore ideas for conjecturing targets
of unknown drugs. We illustrate the methods on phosphoproteomics data
(RPPA) from SKMEL133 melanoma cancer cells treated with different
drugs targeting components of cancer signaling pathways. Existing cu-
rated knowledge allowed to us explain many of the responses. Conflicts
between the STM model predictions and the data suggest missing re-
quirements for rules to apply.

1 Introduction

Understanding how cells work is a fundamental question in Biology. It is im-
portant for basic science, as well as for practical applications including under-
standing disease, drug discovery, and synthetic biology. There are many aspects,
including the different processes within a cell (metabolism, signaling, transcrip-
tion/translation, ...), how these processes interact, what are the normal states,
and what happens in response to some perturbation.

Executable mechanistic models [7] play an important role in understanding
cellular processes, as they support in silico experiments, hypothesis generation,
and feedback between laboratory experiments and model development. In the
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case of drug discovery such models help to determine details of the mechanism
of action (MOA) and dually, drugs with a known MOA are used to learn details
about how cells work.

The work reported here was done as part of a DARPA Big Mechanism
project. The challenge was to use our Pathway Logic Signal Transduction model
(STM) to explain how drugs with a known mechanism of action caused the
changes in protein expression and/or phosphorylation measured by Reverse
Phase Protein Array (RPPA) using data from [10].

The contributions of this paper are

– methods to explain effects of drugs on exponentially growing cells as mea-
sured by high throughput phosphoproteomics assays.

– a method to build a model of exponentially growing cells from a knowledge
base of rules describing cellular events.

– methods to derive the mechanism (network of events) underlying response
to treatment by drugs with known specific targets

– methods to hypothesize targets of unknown drugs, i.e. perturbations of the
network that could explain measured responses.

Using these methods we were able to explain many of the observed changes in
expression and phosphorylation in SKMEL133 cells when treated with drugs
with known targets, and to make some conjectures regarding possible targets of
two of the unknown drugs.

The SKMEL133 model is available at pl.csl.sri.com/online.html as part
of the Pathway Logic suite of models. The accompanying guided tour is available
as a link from the Online launcher, or directly from pl.csl.sri.com/ along with
a techreport version of this paper.

Plan. We provide a brief introduction to Pathway Logic and describe the general
method for explaining drug study data in section 2. In section 3 we describe the
data set and how it was processed in order to map the data to a PL model.
The model of exponentially growing SKMEL133 cells is presented in section
4. In section 5 we use the model to explain the data for drugs with known,
experimentally validated, targets. In section 6 we analyze the data for two of the
unknown drugs, with consistent results in one case and many mysteries in the
other case. Some related work is discussed in section 7, and we conclude with a
summary and discussion of future work in section 8.

2 Pathway Logic models and their use to analyze data

The objective of Pathway Logic (PL) is to understand how cells work. A recent
overview of PL can be found in [16]. The PL collection of models, knowledge
bases, software, documentation, papers, and tutorials are available from the PL
website [13]. The PL model collection includes models of metabolism, protease
signaling in bacteria, protein glycosylation, and fragments of the human immune
system. The most highly developed model is STM (Signal Transduction Model).
This will be our starting point for modeling response to drugs.
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2.1 PL concepts and reasoning tools
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Fig. 1. From data to models in PL.

As shown in Figure 1, the STM Path-
way Logic models are founded on two
formal knowledge bases: a curated
datum knowledge base (DKB), and
a rules knowledge base (RKB), that
share a controlled vocabulary formal-
ized in Maude [4].

A datum formalizes an experimen-
tal observation of the state or location of protein or other biomolecule (RNA,
Lipids, . . . ) either in some well-defined experimental condition, or a change in
response to some signal or perturbation [12].

Signaling events are formalized as rewrite rules. They are generally inferred
from datums, although rule sets can also be curated from review articles and text
books, or simply hypothesized. A rule contains terms representing the change
(before and after state) as well as terms representing the biological context re-
quired for the change to take place. A rule may be parametric, containing vari-
ables that can be instantiated in multiple ways to give different rule instances
usable in different contexts. Rules in PL do not have rates.

The RKB can be thought of as a global model. Executable models of spe-
cific situations are generated by specifying initial conditions and constraints,
formalized using a notion of dish (as in Petri dish). A dish is a term representing
the initial state of the modeled system. It can be thought of as representing
an experimental setup: cell type, growth conditions, and treatments or other
perturbations. The cell type and growth conditions are represented by specify-
ing which proteins and other biomolecules are present, their location, and their
modification and/or activity state. The PL STM consists of rules concerning
response to over 35 different stimuli (including Egf, IL1, Ngf, Tnf, Tgfb . . . ) as
well as common rules that formalize local changes independent of a particular
stimulus.

In PL, model elements and state are represented using a controlled vocabu-
lary that is specified as a functional module in Maude. There is a core vocabulary
shared by all PL knowledge bases/models and a model specific vocabulary that
declares specific model elements (proteins, chemicals, modifications, locations,
. . . ). The PL controlled vocabulary has several roles: organizing concepts via a
sort/type hierarchy; determining legal/well-formed/meaningful terms by speci-
fying constants and typed term constructors, and giving meaning to constants
by providing metadata linking constant symbols to external references (Uniprot,
HMDB, . . . ).

A PL executable model state is multi-set of occurrences of entities (proteins,
chemicals, genes, . . . ). An occurrence specifies an entity, its modifications and/or
activity state, and its location. For example Braf-act@CLc is an occurrence of
active Braf in the cytoplasm (CLc), PIP3@CLm is an occurrence of the lipid PIP3 in
the cell membrane (CLm), S6k1-phos!T412@CLc is an occurrence in the cytoplasm
of S6k1 phosphorylated on threonine 412.
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The STM model uses the term family for groups of proteins that cannot be
differentiated by antibodies. For example, the anti-Akt antibody (CST#4691)
used in [10] detects Akt1, Akt2, and Akt3. We cannot determine whether the
increase in the level of protein expression is due to one and/or two and/or three
of the Akts so we use the constant Akts to refer to some or all members of this
family. Similarly, the antibody used to detect Akt1-phos!S473 (CST#9271) also
recognizes Akt2-phos!S474 and Akt3-phos!S472. We use a site code (symbolic
name) to represent the corresponding residues in all three proteins. The families
and site codes used in the current work are shown in the table below.

Site Code Refers to and/or and/or

Akts-phos!FSY Akt1-phos!S473 Akt2-phos!S474 Akt3-phos!S472
Akts-phos!KTF Akt1-phos!T308 Akt2-phos!T309 Akt3-phos!S307
Gsk3s-phos!SFAE Gsk3a-phos!S21 Gsk3b-phos!S9
Mek12s-phos!SMANS Mek1-phos!S218-phos!S222 Mek2-phos!S222-phos!S226
Erks-phos!TEY Erk1-phos!T202-phos!Y204 Erk2-phos!T185-phos!Y187

An important part of the PL system is the Pathway Logic Assistant (PLA),
which is a tool to generate, visualize, browse, and analyse executable PL models.
Given a dish and an RKB, PLA uses a symbolic reasoning and abstraction
technique called forward collection to infer a minimal set of rule instances that
cover all situations reachable from the initial state. The resulting concrete rule
set naturally forms a network, linking rules by shared output/input elements.
The initial state together with the collected rules forms an executable model. A
theory transformation is used to convert the model to a Petri Net to be able to
use reasoning tools for Petri Nets. PLA can now be used to specify goals and/or
knockouts, derive the subnet of all pathways satisfying the goals (omitting the
knockouts), invoke a model checker [15] to find specific pathways, and export nets
as images or data structures for use by other tools.1 Within a subnet one can ask
for all the execution pathways leading to the goal, using an inference algorithm
described in [6]. Knowing all the pathways one can compute properties such as
single and double knockout occurrences or essential rules. If a single knockout
occurrence is removed from the model, the goal will no longer be reachable.
Similarly for double knockouts and essential rules.

2.2 Use of PL to explain data: generating a model

The first step in explaining experimental results is to define a model of the un-
perturbed cell system being studied. For the drug studies we want a snapshot
of an exponentially growing cell system that is perturbed by addition of one or
more drugs. Ideally, a model is built by defining an initial state (using expert
knowledge, literature, the datum KB, and the COSMIC database (for muta-
tions). Then, using PLA, we do a forward collection from this initial state, to
collect all reachable rules in the STM RKB.

1 One can knockout an occurrence, either from the initial state or a potentially reach-
able occurrence, or a rule. Each choice corresponds to a different experimental per-
turbation.
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However, the world is not ideal, and the above steps may not work without
some refinement. One problem is finding information about protein expression
levels of a given cell line under different growth conditions, and the other is that,
a priori, the rules in the RKB may capture different levels of detail (say Yphos
vs phos!Y123) due to different experimental methods, and the rules may be more
specific than necessary, or a rule may represents a set of more specific rules, for
example by referring to a family of proteins rather than specific members.

To address the first problem, we only attempt to include in the model the
measured entities and any relevant up/down stream entities. We do this by a
combination of “fuzzy” backward and forward collection (currently implemented
by hand). The idea is (i) identify rules that would cause the changes seen in the
data; (ii) identify rules that would meet the requirements of the first set of
rules; and (iii) iterate until there are no more requirements to be met. Now
we prepare an initial state: for each entity in the collected rules, determine the
locations and modifications that cannot be produced by any rules. Modify the
result using any available information about mutations and deletions for the
cell line being studied. The unperturbed network is generated from the rule set
and the resulting initial state using ‘fuzzy’ forward collection. The idea here
is that some rules may need to be generalized in order to apply to generated
states. For example a rule may require Mek1-act@CLc but the state may contain
Mek1-act-phos!SMANS@CLi. Adding a variable to the modification set of the
occurrences of Mek1 in the rule solves the problem. After these adaptations,
the PLA forward collection process can be used to generate a model of the
unperturbed system.

2.3 Use of PL to explain data: using the model

In PL, explanations for measured changes in response to treatment of a cell
system with a given drug can be found in several ways. One way is to knock out
the drug target and use model checking to see if increases/decreases observed
in the data agree with reachability results. We can also find all the paths (in
the network model) to different observed significant changes and combine this
information to suggest targets if the drug or its mechanism of action is unknown.

Here we focus on direct comparison of models of untreated and treated sys-
tems. Given a drug that is known to inhibit some occurrence in the model,
we generate a model of the treated system by removing that occurrence from
the network and use PLA to do a forwards collection to determine the remain-
ing reachable subnet. Now we can compare the unperturbed (untreated) and
perturbed (treated) model networks to obtain a qualitative prediction of in-
crease/decrease in levels of some of the network occurrences. Three principles
for inferring expected change are illustrated in figure 2.

Note that some of the drugs inhibit activity by direct allosteric inhibition.
The conformational change caused by the drug should not be interpreted as the
inhibition or enhancement of an upstream kinase. Some of the changes cannot
be explained by a PL model because they are caused by things other than signal
transduction. Some of the changes are due to proteins that are only expressed
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Fig. 2. Three principles

during certain phases of the cell cycle. If a drug causes a cell cycle arrest, the
proportion of cells in that phase are increased and the proteins only seen during
that phase will be increased over those in cycling cells.

3 The experiment and data

To correctly interpret data, it is important to understand how it is generated
and the criteria for interpreting measurements.

Primer on Interpreting the Results of Cell Based Assays

– An experiment starts with seeding cells into the containers (petri dish, flask,
test tube) where they will be treated.

– The number of biological replicates is the number of containers used for
each treatment. This detects differences in results caused by the seeding and
treatment procedures.
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– The number of technical replicates is the number of measurements made for
each biological replicate. This gives you the probability that your detection
method will give you the same value for the same sample.

– The number of experimental replicates is the number of times the procedure
is performed from different cell seedings. This gives you the probability that
the change observed will occur in another experiment.

– The convention for publication in a cell biology data paper is to perform
at least three independent experiments using three biological replicates for
each treatment and control.

– The number of technical replicates required depends on the detection method
used. The noisier the detection method, the more technical replicates re-
quired.

For the data set to be analyzed here, exponentially growing SKMEL133 cells
were treated with 12 drugs at two concentrations. Change in protein expres-
sion/phosphorylation was measured for 138 entities at 24 hours using Reverse
Phase PhosphoProteomics Analysis (RPPA) [3].

The data to be explained was available in two formats: (i) fold-change mea-
surements using 3 biological replicates from one experiment based on an unre-
ported number of technical replicates; (ii) relative concentration values for each
of the 3 biological replicates from one experiment and from 1 to 4 technical
replicates. Variance analysis showed that the noise from the provided technical
replicates was larger than that of the biological replicates. This tells us that one
technical replicate is not sufficient for realistic quantitation. Without quantita-
tive information we resorted to using the fold-change measurements with a cutoff
of 1.2 fold change (up or down) based on the number of changes that we would
expect to see in response to what is known about the mechanism of action of
the drugs.

Only the highest drug concentration was considered. Changes in the phos-
phorylation of a protein were normalized to the total expression of that protein.
If the total expression was not measured, the phosphorylation change could not
be reliably determined, so we didn’t attempt to explain those results. The one
exception is the change in the Erks TEY site because the protein concentration
of Erks rarely changes over 24 hour perturbations.

To map the data onto a PL model it is necessary to determine what each
antibody actually detects and map this to PL terms. The antibodies used in
the RPPA analysis were obtained from commercial suppliers and validated by
the MD Anderson Cancer Center RPPA Core Facility. Information about the
validation status and source of the antibodies was obtained from the Standard
Antibody List downloaded from [2]. We determined the antibody targets by
mapping the antibody name reported in the data set to the Official Antibody
Name used in the Standard Antibody List. Specificity and site information was
obtained from the supplier. The protein or family names of the target proteins
were converted into Pathway Logic names and the sites were adjusted to agree
with the canonical sequence of each protein in UniProt. In the case of protein
families, letter codes were used to match all members, as described in section 2.
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To explain the response to a drug treatment it is useful to know what the
drug is, i.e. its chemical structure, to have clear experimental evidence of the
target and its action on the target, and to know whether there are off-target
effects. We were able to identify (find a PubChem identifier for) 8 of the 12 drugs
used in the experiment. Subsequent literature search revealed solid evidence for
proposed mechanisms of action for 5 of the 8. This is summarized in section 5
as part of the explanation of the data.

4 Inferring the SKMEL133 model

As discussed in section 2 our idea is to build the minimal model needed to
explain the data, rather than attempting a full model of SKMEL133 cells. Thus
we include as a minimum the proteins such that the change in protein expression
or phosphorylation passed the 1.2 fold cutoff. We carried out (by hand) the fuzzy
backwards collection starting from the changed occurrences, adding occurrences
with a degradation modification to represent a possible cause of change in protein
expression. For example rule 3823c

rl[3823c.Irs1.degraded]:

Irs1-ubiq-phos!S270-phos!S307-phos!S636-phos!S1101@CLc

=>

Irs1-degraded@Sig

if Cul7@CLc

is collected to account for changes in Irs1 expression level. This also introduces
the protein Cul7 into the model. Here we use informal rule notation where fol-
lowing the if are the controls (the required biological context) of the reaction.

rl[109c.Akts.by.Pdpk1]: Akts@CLc => Akts-phos!KTF@CLc if Pdpk1-act@CLc

Rule 109c is collected to produce Akts-phos!KTF, which then introduces a re-
quirement for Pdpk1-act. This can be satisfied by rule 3818c

rl[3818c.Pdpk1.by.PIP3]: Pdpk1@CLc => Pdpk1-act@CLc if PIP3@CLm

which leads to collecting rule 3820c

rl[3820c.PIP3.from.PIP2]: PIP2@CLm => PIP3@CLm if Pi3k@CLi

to produce PIP3. This chain stops here, as PIP2 is a common component and
there are no rules producing the protein Pi3k so we assume it is expressed by
SKMEL133 cells normally.

Collecting the occurrences that can not be produced by a rule we have a
preliminary version of the initial state. SKMEL133 cells contain the constitu-
tively active mutation BrafV600E so we replaced wild-type Braf with BrafV600E.
They also have a homozygous deletion of Pten, so we eliminated Pten. The re-
sult, called the SKMEL133dish, contains 31 occurrences (listed in Appendix 1
of the techreport version).

As discussed in section 2 some iteration is required to achieve a connected set
of rules because the curated rules reflect what experiments measured and may
have different levels of detail, or need generalization. Also, the following rule was
added to model the BrafV600E activity.
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Fig. 3. The unperturbed SKMEL133 model.

rl[3808c.BrafV600E.act]: BrafV600E@CLc => Braf@act@CLc

This rule reflects the observation that the mutated form of Braf behaves like
the active form of wild type Braf. This is a simplification which is adequate in
the context of the current model, although it would fail if there were rules to
deactivate Braf, since the mutated form can not be deactivated. After adding
the above rule and generalizing some rules by hand, PLA is used to assemble
the executable model, called the SKMEL133dishnet, shown in Figure 3. 2

5 Explaining response to known drugs

As discussed in section 3, we selected 5 drugs for which we could determine a
well-defined chemical id (PUBCHEM), and for which there is reasonable evi-
dence for the proposed mechanism of action (determined by literature search):
AktI12, PD0325901, PLX4720, Temsirolimus, and ZSTK474 (described in more
detail below). For each of these drugs we determined occurrences that changed
significantly using the fold change table from [10] and a fold change cutoff of 1.2
for increase and 0.8 for decrease as described in section 3. A table summarizing
these changes is included in Appendix 1. Using the methods described in section

2 Although in printed form the node labels are not readable, zooming in with a pdf
reader reveals all the details.
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Fig. 4. The SKMEL133 model treated with AktI12.

2 we could explain 42 out of 107 changes in response to the 5 drugs. Many of the
unexplained changes are in protein expression levels, which was generally not
the focus of our curation efforts in the past. In the following we illustrate the
analysis for AktI12 and Temsirolimus in some detail, and briefly summarize the
results for the other three drugs. Recall that the SKMEL133 model and a guided
tour allowing the user to reproduce these results and carry out other gedanken
experiments are available for download or in the Online collection at [13].

5.1 Effects of AktI12

AktI12 (PubChemCID 10196499) is a reversible allosteric inhibitor of Akt1 and
Akt2 which prevents the conformational change that permits phosphorylation
and activation [11]. To model the effect of AktI12 we use PLA to block (avoid)
the occurrence Akts-act-phos!FSY-phos!KTF@CLc in the SKMEL133 dishnet.
Recall, this occurrence can be interpreted as Akt1 phosphorylated at S473/T308
and/or Akt2 phosphorylated at S474/T309 in the cytoplasm. Now we compute
the resulting reachable network, and compare it to the untreated model to de-
termine what has become unreachable.

Figure 4 shows the explanation as an annotated version of network produced
by PLA in the context of the unperturbed model. It shows how drug perturba-
tions interrupt the path between the initial state and the measured goals. The
key in the figure describes the color coding in detail. Yellow coloring highlights
the unreachable part of the SKMEL133 dishnet. Occurrences outlined in red
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Fig. 5. The SKMEL133 model treated with Temsirolimus.

are directly inhibited by the drug. Occurrences outlined in green decrease in re-
sponse to the drug. In particular the measured decrease in Eif4ebp1-phos!S65,
Eif4ebp1-phos!T37, Gsk3b-phos!S9, Gsk3s-phos!SFAE, Rps6-phos!S235,
Rps6-phos!S240, S6k1-phos!T412, and Tsc2-phos!T1462 in response to AktI12
is explained by the unreachability of the corresponding occurrences. The increase
in Irs1 protein expression is explained by the inhibition of the degradation of Irs1
by ubiquitination and degradation in the proteasome. The remaining changes are
increases in protein expression of Cav1, Fn1, Pai1, and Tp53 and a decrease in
Cox2 and CyclinB1, which are not represented in our model.

5.2 Effects of Temsirolimus

Temsirolimus (PubChemCID 23724530) inhibits Mtorc1 activity (a complex of
Mtor, Mlst8, and Raptor) but enhances Mtorc2 activity (a complex of Mtor,
Mlst8, Sin1, and Rictor) [5]. Figure 5 shows the annotated model of Temsirolimus
response.

The model explains measured decrease in events downstream of Mtorc1:
Eif4ebp1-phos!T37, Rps6-phos!S235, Rps6-phos!S240, S6k1-phos!T412, and
Irs1-degradation. It also explains measured increase in events that are down-
stream of Mtorc2: Akts-phos!FSY, Akts-phos!KTF.

The model also predicts increases in Eif4ebp1-phos!S65@CLc (the data
shows a decrease) and Gsk3s-phos!SFAE@CLc (the data shows no change). What
might cause this discrepancy? A common cause of such discrepancy is a missing
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control on the phosphorylation rule, either because there are no published ex-
periments giving evidence, or because they have not yet been curated. It is also
possible that there are alternative activities of the Akts. Note that the RPPA
experiments do not measure activity directly. Unraveling this mystery is a topic
of ongoing/future work.

5.3 Effects of PD0325901, PLX4720 and ZSTK474

PD0325901 (PubChemCID 9826528) is an allosteric inhibitor of Mek1 and Mek2
kinase activity [14]. To represent the effects of PD0325901, the SKMEL133 model
can be blocked at the occurrence Mek1-act-phos!SMANS@CLc which can be in-
terpreted as Mek1 phosphorylated at S218 and S222. Although the antibody
used in generating the data identifies both phospho-Mek1 and phospho-Mek2,
the STM DKB lacks sufficient datums to include Mek2 in the rules. The re-
sulting unreachable set explains decreases in Erks-phos!TEY, Rps6-phos!S235,
Rps6-phos!S240, Rsk1-phos!T359, S6k1-phos!T412, and Ybx1-phos!S102. Us-
ing the decrease in Bim-degraded@Sig, it also explains the increase in Bim pro-
tein expression.

PLX4720 (PubChemCID 24180719) binds to the ATP binding site of active
Braf and Raf1. It is 10 times more effective towards BrafV600E than wild-type
Braf or Raf1. At the concentration used to produce the dataset (120 nM) it
should be more effective on BrafV600E than Raf1 [17]. As expected, the pertur-
bation profile PLX4720 is almost identical to that of PD0325901, since Braf is
responsible for phosphorylation of Meks.

ZSTK474 (PubChemCID 11647372) inhibits all four isoforms of the catalytic
subunit of Pi3k [5]. This then inhibits Akts-phos!FSY-phos!KTF@CLc via de-
crease in the activity of the upstream kinase Pdpk1. The perturbation profile is
the same as that for AktI12 except that the decrease in Akts-phos(FSY) and
Akts-phos(KTF) are caused by a decrease in the activity of the upstream kinase
Pdpk1.

6 Conjecturing mechanisms of unknown drugs

We looked at two of the drugs that were not identifiable: (1) a drug referred
to as SR with claimed target Src (although the data shows no significant effect
on measured Src), and (2) a drug referred to as RY, with claimed target CDK4
although no form of CDK4 was measured. Our approach to analyzing the data
for these unknown drugs consisted of the following steps.

1. Identify changed occurrences in the model (for protein expression we use
change of opposite sign in degradation of the protein as a representative).

2. Form the subnet containing all the pathways to these occurrences
3. For each occurrence with negative change, compute the subnet of pathways

leading to that occurrence and use the pathway analysis tool to list the rules
and occurrence that are single knock outs (i.e., if removed from the network
the goal occurrence is no longer reachable).
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4. Make a table with columns corresponding to the negatively changed occur-
rences and rows labeled by the knockouts. The entry in a cell is 1 if the
knockout labeling the row is in knockout list of the occurrence labeling the
column and 0 otherwise.

Now we want minimal subsets of rows that add to 1 for each column. Then
inhibiting each of the row labels in such a subset will explain all the negative
changes. Of these minimal sets, we prefer those that are furtherest down stream,
since otherwise there are likely to be off-target effects.

Given a candidate drug target list, we need to check if this predicts changes
consistent with the data. This can be done as for the drugs with known action.
Namely, starting with the unperturbed model (the SKMEL133 dishnet), knock
out the hypothesized drug target(s), compute the subnet, compare to the unper-
turbed net to see what is missing. Clearly, the set of occurrences used to generate
the knockout lists will be unreachable and thus consistent with the hypothesized
targets. Are the other unreachables plausible? We also need to look for explana-
tions for occurrences that increased, such as blocked or diverted branches. As for
the case of drugs with known targets we use the 1.2/.8 fold cutoff to determine
the list of changed occurrences, and require phosphorylation change relative to
protein expression change to meet the cut off criteria. In the following we dis-
cuss the for SR. The results for RY can be found in the techreport version of
the paper.

6.1 Analysis of the effects of SR

From the data for the drug SR we determined 2 instances of increase in pro-
tein expression (1 is in the model), 3 instances of decrease in protein expres-
sion (none in the model), 2 instances of increase in phosphorylation (none in
the model) and 8 instances of decrease in phosphorylation (6 in the model).
Converting the one increase in protein expression to a decrease in degrada-
tion, the decreases represented in the model to consider are: Bim-degraded@Sig,
Eif4ebp1-phos!S65-phos!T37-phos!T46-phos!T70@CLc,
Eif4ebp1-phos!S65@CLc, Erks-phos!TEY@CLc, Gsk3s-phos!SFAE@CLc,
Rps6-phos!S235@CLc, and S6k1-phos!T412CLc.

After computing the subnet containing these changed occurrences and com-
puting the knockouts for each of these occurrences, we find that no single knock-
out can explain the observed decreases. There are many double knockouts that
can explain the decreases. They all involve blocking Mek1 activity and Akts
activity, either directly or by an upstream effect. Thus the minimal pair is

[Akts-phos!FSY-phos!KTF@CLc, Mek1-act-phos!SMANS@CLc]

Although these occurrences are not decreased in response to SR, it is quite possi-
ble that the drug blocks their action and hence causes the observed downstream
effects. Choosing targets upstream of this pair, say [Braf-act@CLc, Pi3k@CLi]
would be inconsistent with the observed data as in this case one should observe
a decrease in the phosphorylation of Akts and Mek1.
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Now we check whether blocking this pair of occurrences is consistent with
the measured response to SR. We start with the unperturbed model, knockout
(avoid) the conjectured pair of occurrences, compute the resulting reachable
subnet, and the unreachable set. The following occurrences that are predicted
by the model to decrease are measured:

– Irs1-degraded@Sig: protein expression did not change.
– Occurrences involving Rsk1-phos!T359: neither Rsk1 protein expression or

Rsk1-phos!T359 changed. Note that the antibody for Rsk1 is labeled “use
with caution” and the antibody for Rsk1-phos!T359 is not validated.

– Ybx1-phos!S102@CLc: This decreased, which is consistent. The total protein
for Ybx1 was not measured, so it was not included in the list of changes to
explain.

6.2 Analysis of the effects of RY

From the data for the drug referred to as RY we determined 14 instances of in-
crease in protein expression (1 is in the model), 9 instances of decrease in protein
expression (none in the model), 8 instances of increase in phosphorylation (3 in
the model) and 5 instances of decrease in phosphorylation (4 in the model). Just
from the numbers it seems this drug has a rather different effect on SKMEL133
cells than SR.

Converting the one increase in protein expression to a decrease in degrada-
tion, the decreases represented in the model to consider are: Bim-degraded@Sig,
Eif4ebp1-phos!S65-phos!T37-phos!T46-phos!T70@CLc,
Eif4ebp1-phos!S65@CLc, Gsk3s-phos!SFAE@CLc, and
Irs1-phos!S1101-phos!S270-phos!S307-phos!S636@CLc.

Looking at the knockouts for these occurrences we see that blocking Akts
activity explains everything but the increase in Bim expression. If we knock-
out Akts activity, the following measured phosphorylations become unreachable:
Rps6-phos(S235), Rps6-phos(S240), S6k1-phos!T412, and Tsc2-phos!T1462.
The data shows no significant change in these entities. The trouble with this
explanation is that Akts protein expression decreases substantially, while the
levels of the phosphorylated forms increases relative to the total Akts protein.
It is possible that the drug inhibits the activity of the phosphorylated form.

In our model Bim degradation is controlled by activity of Erks, which is
controlled by activity of Mek1, which is controlled by Braf. Although activity
of these proteins is not measured, it is generally believed that phosphorylation
is required and the data shows no change in the relevant phosphorylation lev-
els. Thus our model does not provide an explanation for the increase in Bim

expression consistent with other changes.
Ctnnb1-phos!S33 increases, which in the model leads to an increase in

Ctnnb1-degraded and hence we should observe a decrease in Ctnnb1. The mea-
sured level is .82 which is consistent with our cutoff. According to rule 1340c, an
increase in Gsk3s-act would explain the measured increase in Ctnnb1-phos!S33.
The decrease in Gsk3s-phos!SFAE (a consequence of hypothesized decrease in
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Akts activity) could explain an increase in Gsk3s-act, since it is not being used
up.

One final observation about RY. In addition to the case of Akts protein ex-
pression decreasing while the relative phosphorylation levels increase, this hap-
pens for Accs, Atr, and P38s. It would be interesting to know of other drugs
that exhibit this pattern.

7 Related work

We focus on the use of RPPA data to analyze cellular systems. Existing work
generally focuses on inferring network models that fit the data in order to identify
interactions and possible causal relations among responding proteins and/or to
use the resulting models to predict response to new perturbations. To the best
of our knowledge our approach of using an existing curated model to explain the
mechanisms underlying cellular response to drugs, and consequently validate or
find gaps or problems with the parts of the model, or to hypothesize alternative
actions of a drug is unique.

The work presented in [10] is the source of the data explained in the present
paper. The work was motivated by the problem of drug resistance, particu-
larly in cancers. The paper describes a combined experimental/ computational
perturbation biology method to look for anti-resistant target combinations. The
experiment was described in section 3, with cells being treated by pair-wise com-
binations of drugs as well as the single drug treatments. A space of executable
ODE models corresponding to influence network topologies with weighted edges
are derived from the data using belief propagation techniques. The process is
seeded with a prior network extracted from Pathway Commons using the PERA
tool [1]. The 4000 best models were selected to make predictions of phenotypic
effects of thousands of combinations of perturbations. As a result they propose
cMyc as a co-target of Mek or Braf.

The results of the HPN-DREAM network inference challenge are summarized
in [9]. This challenge focused on learning causal influences in signaling networks.
The objective here was to train models capable of predicting context-specific
phosphoprotein time courses, in contrast to the Big Mechanism objective to
provide mechanistic explanations for the effects of perturbations. Participants
were provided with RPPA phosphoprotein data from four breast cancer cell lines
under eight ligand stimulus conditions combined with three kinase inhibitors and
a vehicle control (dimethyl sulfoxide). Data for each biological context (cell line,
stimulus combination) comprised time courses for approximately 45 phosphopro-
teins. Models were assessed using context-specific test data that were obtained
under a different intervention (inhibition of the kinase mTOR). The best-scoring
method for the experimental data task, Prophetic Granger with heat diffusion
prior, used a prior network created by averaging similarity matrices. The matri-
ces were obtained via simulated heat diffusion applied to links derived from the
Pathway Commons database. The best AUROC score was just under .8 while
most methods scored between .5 and .6. While some of the models succeeded
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in reasonable predictive power, more work is needed to obtain more detailed
mechanistic explanations.

Reverse Phase Protein Arrays (RPPAs or RPLAs) were used in [8] to profile
signaling proteins in 56 breast cancers and matched normal tissue as a method to
discover phosphorylation-mediated signal transduction patterns in human tumor
samples. The paper discusses the process of validating antibodies (100 antibodies
validated of 400 screened), and methods for quantitation of data in some detail.
Unsupervised hierarchical clustering was used as a first step in discovering pat-
terns of co-regulation. The hierarchy was cut to yield twelve clusters, which were
mapped onto pathways derived from Gene Network Central Pro. This revealed a
cluster involving increased abundance of the Axl receptor tyrosine kinase (RTK)
and the cMet RTK pathway. Structured Bayesian inference was then used to
further analyze this cluster to find the interaction network topology with good
generalization properties and that best classified cancer vs non-cancer data. The
results suggested two cancerous categories: 1) where MET is highly phosphory-
lated and cRAF is always highly phosphorylated and 2) where MET phospho-
rylation is low and cRAF phosphorylation is low at sites consistent with cRaf
inactivation.

8 Conclusions and Future Directions

We have shown how the Pathway Logic STM model, capturing what we know
about intracellular signal transduction, can be used to explain experimental re-
sults. The rules used in the model are derived from experimental results, so if
the model were complete we should be able to use the network derived from ex-
ponentially growing cultured cells to trace the paths from a known perturbation
to the measured effects. In some of the cases, we were successful. Our successes
were predominantly in the phosphorylation cascades and protein degradation
events used in growing cells. We were less effective in explaining the decreases in
expression of proteins due to inhibition of translation or transduction, or changes
in the cell cycle. There is still a lot of experimental evidence in the literature
to collect and make into rules. There are still a lot of experiments that need to
be performed and published. Work is in progress to automate this fuzzy back-
wards and forwards collection carried out by hand to generate the SKMEL133
model. We are also investigating representation of executable models, network
perturbations, and experimental observations as constraints and using abductive
reasoning to generate potential explantations. This would unify the treatment
of various aspects and help automatic the end to end reasoning process.

One caveat, not all of the unexplained results are due to an incomplete model.
Only one experiment was performed so the probability that the results could be
reproduced cannot be measured. Although 3 biological replicates were used -
no information about the variance were provided. In addition, we obtained the
mechanism of action of the drugs from a small sampling of the literature. Any
of the drugs could have additional effects that we did not find.

Learning about how a cell works is still a work in progress. The Pathway
Logic STM model is a tool designed to help. Hopefully it does.
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Appendix 1.

Drug Change Target
explained	
by	model? Drug Change Target

explained	
by	model? Drug Change Target

explained	
by	model?

AktI12 - Akts-phos(FSY) no PLX4720 + Bim-prot yes ZSTK474 - Acc1-prot-exp no

AktI12 - Akts-phos(KTF) no PLX4720 + Cdkn1b-prot no ZSTK474 + Akts-prot-exp no

AktI12 + Cav1-prot-exp no PLX4720 - Cox2-prot-exp no ZSTK474 - Akts-phos(FSY) yes

AktI12 - Cox2-prot-exp no PLX4720 + Ctnnb1-prot-exp no ZSTK474 - Akts-phos(KTF) yes

AktI12 - CyclinB1-prot-exp no PLX4720 - CyclinB1-prot-exp no ZSTK474 + Cav1-prot-exp no

AktI12 - Eif4ebp1-phos(S65) yes PLX4720 - CyclinD1-prot-exp no ZSTK474 + Chek2-phos(T68) no

AktI12 - Eif4ebp1-phos(T37/T46) yes PLX4720 - Erks-phos(TEY) yes ZSTK474 - Cox2-prot-exp no

AktI12 - Erks-phos(TEY) no PLX4720 - Mek12s-phos(SMANS) yes ZSTK474 - CyclinB1-prot-exp no

AktI12 + Fn1-prot-exp no PLX4720 - Myc-prot-exp no ZSTK474 + CyclinD1-prot-exp no

AktI12 - Gsk3b-phos(S9) yes PLX4720 - Rb1-phos(S608/S807/S811) no ZSTK474 - Eif4ebp1-phos(S65) yes

AktI12 - Gsk3s-phos(SFAE) yes PLX4720 - Rps6-phos(S235) yes ZSTK474 - Eif4ebp1-phos(T37/T46) yes

AktI12 + Igfbp2-prot-exp no PLX4720 - Rsk1-phos(T359) yes ZSTK474 + Fn1-prot-exp no

AktI12 + Irs1-prot-exp yes PLX4720 - S6k1-phos(T412) yes ZSTK474 - Gsk3b-phos(S9) yes

AktI12 + Pai1-prot-exp no PLX4720 + Tp53-prot-exp no ZSTK474 - Gsk3s-phos(SFAE) yes

AktI12 + Pax2-prot-exp no PLX4720 - Ybx1-phos(S102) yes ZSTK474 + Irs1-prot-exp yes

AktI12 - Plk1-prot-exp no Temsirolimus - Akts-prot-exp no ZSTK474 - Mek12s-phos(SMANS) no

AktI12 - Rps6-phos(S235) yes Temsirolimus + Akts-phos(FSY) yes ZSTK474 + Pai1-prot-exp no

AktI12 - Rps6-phos(S240) yes Temsirolimus + Akts-phos(KTF) yes ZSTK474 + Plk1-prot-exp no

AktI12 - S6k1-phos(T412) yes Temsirolimus - Ampkas-phos(LRtSC) no ZSTK474 - Rb1-phos(S608/S807/S811) no

AktI12 + Tp53-prot-exp no Temsirolimus + Col6a1-prot-exp no ZSTK474 - Rps6-prot-exp no

AktI12 - Tsc2-phos(T1462) yes Temsirolimus + Cox2-prot-exp no ZSTK474 - Rps6-phos(S235) yes

PD0325901 - Akts-phos(FSY) no Temsirolimus + Cav1-prot-exp no ZSTK474 - Rps6-phos(S240) yes

PD0325901 - Akts-phos(KTF) no Temsirolimus - CyclinB1-prot-exp no ZSTK474 - S6k1-phos(T412) yes

PD0325901 + Ampkas-phos(LRtSC) no Temsirolimus + CyclinE1-prot-exp no ZSTK474 + Stat5s-phos(DGYV) no

PD0325901 + Bim-prot-exp yes Temsirolimus - Eif4ebp1-phos(S65) no ZSTK474 + Tp53-prot-exp no

PD0325901 + Cdkn1b-prot no Temsirolimus - Eif4ebp1-phos(T37/T46) yes

PD0325901 - Cox2-prot-exp no Temsirolimus - Eif4ebp1-phos(T70) yes

PD0325901 + Ctnnb1-prot-exp no Temsirolimus + Fn1-prot-exp no

PD0325901 - CyclinB1-prot-exp no Temsirolimus + Irs1-prot-exp yes

PD0325901 - CyclinD1-prot-exp no Temsirolimus - Mek12s-phos(SMANS) no

PD0325901 - Erks-phos(TEY) yes Temsirolimus + Pai1-prot-exp no

PD0325901 + Foxo3-prot-exp no Temsirolimus - Plk1-prot-exp no

PD0325901 - Mek12s-phos(SMANS) no Temsirolimus - Rps6-prot-exp no

PD0325901 - Myc-prot-exp no Temsirolimus - Rps6-phos(S235) yes

PD0325901 - Pai1-prot-exp no Temsirolimus - Rps6-phos(S240) yes

PD0325901 - Plk1-prot-exp no Temsirolimus - S6k1-phos(T412) yes

PD0325901 - Rb1-phos(S608/S807/S811)no Temsirolimus + Tp53-prot-exp no

PD0325901 - Rps6-phos(S235) yes Temsirolimus + Tsc2-phos(T1462) yes

PD0325901 - Rps6-phos(S240) yes

PD0325901 - Rsk1-phos(T359) yes

PD0325901 - S6k1-phos(T412) yes

PD0325901 + Stat5a-prot-exp no

PD0325901 + Tp53-prot-exp no

PD0325901 - Ybx1-phos(S102) yes

Fig. 6. Summary of changes in response to the 5 known drugs.

The occurrences in the SKMEL133 dish.

Akts@CLc, Axin1@CLc, Bim@CLc, BrafV600E@CLc, Btrc@CLc,

Csnk1a1-act@CLc, Ctnnb1@CLc, Cul7@CLc, Eif4ebp1@CLc, Erk5@CLc,

Erks@CLc, Fbxw8@CLc, Gsk3s-act@CLc, Ilk-act@CLc, Irs1@CLc,

Maz@NUc, Mdm2@CLc, Mek1@CLc, Mlst8@CLc, Mtor@CLc, Pdpk1@CLc,

Pi3k@CLi, PIP2@CLm, Pld1@CLi, Proteasome@CLc, Raptor@CLc,

Rbx1@CLc, Rheb-GTP@CVc, Rictor@CLc, Rps6@CLc, Rsk1@CLc,

S6k1@CLc, Sin1@CLc, Skp1@CLc, Tp53-gene-on@NUc, Tsc1:Tsc2@CVc,

Ybx1@CLc, Ywhas@CLc
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