Applications of Rewriting Logic in Biology

Carolyn Talcott
SRI International

July 2007
Course Plan

Session I: Background
  • Rewriting Logic
  • Maude

Session II: Simple Signaling Processes
  • Biological processes -- informally
  • Pathway Logic representation of signaling
    • SmallKB - a small network

Session III: Interactive Analysis
  • Transformation to Petri nets
  • The Pathway Logic Assistant

Session IV: Using the Pathway Logic Assistant
  • Demo -- SmallKB live
  • The Egf Stimulation Model
    • Curation
    • Demo
Lecture I: Outline

Logic
  • Propositional Reasoning
  • Equational Reasoning
  • ADTs
  • Rewriting Logic

Maude <http://maude.cs.uiuc.edu/>
  • Functional modules (Equational)
  • System modules
  • Search and model-checking
  • Reflection
About Logic

Making description and reasoning precise

• Language
  • for describing things and/or properties
  • given by a signature and rules for generating additional elements (terms, formulas)

• Models--for interpreting to language elements
  • a mathematical structure
  • interpretation of terms
  • satisfaction of formulas: $M \models \text{wff}$

• Reasoning
  • rules for inferring what holds in all models
Propositional/Boolean Logic

• Language
  • Signature -- a set of propositions $P, Q, \ldots$
  • Formulas built from propositions using boolean constants and connectives (no terms)
  • true, false, $P$ and $Q$, not $P$, ...

• Model-- A valuation of propositions
  • $V : \text{Prop} \rightarrow \{T,F\}$
  • Extended to formulas:
    • $V(P \text{ and } Q) = \text{if } (V(P) = T \text{ and } V(Q) = T) \text{ then } T \text{ else } F$
    • $V \mid= \text{wff if } V(\text{wff}) = T$

• Reasoning
  • simplest is truth table
Propositional/Boolean Logic II

- Basic truth table

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

- Defined operators
  - $A \text{ or } B := \neg(\neg(A) \text{ and } \neg(B))$
  - $A \text{ impl } B := \neg(A) \text{ or } B$
### Propositional/Boolean Logic: Example

- \( V: A,B,C \rightarrow T,T,F \)
- \( V(\neg A \text{ and } B \text{ and } \neg C) = T \)
- otherwise
- \( V( A \text{ and } B \text{ and } \neg C) = F \)

**Note:**
\( A \text{ and } B \text{ and } \neg C \)
is equivalent to
\( \neg (A \text{ and } B \implies C) \)

**Proof:** Compute truth table from the basic table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(A and B)</th>
<th>\neg(C)</th>
<th>(A and B) and \neg(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Example as a Boolean Circuit
Equational Logic: Language

- **Signature**
  - a set of operation symbols with arity, $o : O_n$
  - a set of variable symbols, $X$

- **Terms** $T$
  - $x : X$
  - $c : O_0$
  - $f(t_1, ..., t_n)$ for $f : O_n$ and $t_1, ..., t_n : T$

- **Formulas** -- $t_0 = t_1$
Equational Logic: Models

- $M = \langle D, I \rangle$
  - $D$ a set (of data)
  - $I : O_0 \rightarrow D$, $I : O_n \rightarrow (D^n \rightarrow D)$
  - $V : X \rightarrow D$ variable assignment

- Interpretation relative to a variable assignment
  - $I[V](x) = V(x)$
  - $I[V](f(t_1, ..., t_n)) = I(f)(I[V](t_1), ..., I[V](t_n))$

- Satisfaction
  - $M \models t_0 = t_1 [V]$ if $I[V](t_0) = I[V](t_1)$
Equational Logic: Reasoning Rules

- equivalence
  - $t = t$
  - $t_0 = t_1 \vdash t_1 = t_0$
  - $t_0 = t_1, t_1 = t_2 \vdash t_0 = t_2$

- congruence
  - $t_1 = t_1' \ldots t_n = t_n' \vdash f(t_1, \ldots, t_n) = f(t_1', \ldots, t_n')$

- substitution
  - $t = t' \vdash t[S] = t'[S]$
Equational Theory

• ET = Equational Signature + Equational Axioms (E)

• $M \models ET$ if $M \models eq$ for $eq : E$

• $t[E]$ -- the equivalence class of $t$ wrt $E$

• Initial model $\langle T/E, I/E \rangle$
  • no junk -- every element is denotation of a term
  • no confusion -- terms have equal denotations iff they are in the same equivalence class
  • proof by induction on term structure
Equational Theory: Peano Numbers

- **Signature**
  - **Ops:** $0 : O_0$, $s : O_1$, $+, m : O_2$
  - **Vars:** $x, y, \ldots : X$

- **Equations:**
  1. $x + 0 = 0$
  2. $x + s \, y = s(x + y)$
  3. $0 \, m \, x = 0$
  4. $s(x) \, m \, 0 = s(x)$
  5. $s(x) \, m \, s(y) = x \, m \, y$

- **Calculating**
  $$\begin{align*}
  s \, s \, s \, 0 + s \, s \, s \, 0 \\
  &\quad = s(s \, s \, s \, 0 + s \, 0) \quad --- \quad 2[x := s \, s \, s \, 0, y := s \, 0] \\
  &\quad = s \, s \, s \, (s \, s \, s \, 0 + 0) \quad --- \quad 2[x := s \, s \, s \, 0, y := 0] \\
  &\quad = s \, s \, s \, s \, s \, s \, 0 \quad --- \quad 1 \text{ congruence}
  \end{align*}$$
ADTs (Abstract Data Types)

An ADT consists of one or more sets of values, together with a set of operations

\[(D_1 \ldots D_k, c_1 \ldots c_m, f_1 \ldots f_n)\]

An initial model of an equational theory

0. Values are given by constructors: \(c(t_1,\ldots,t_l)\)
0. Functions \(f_1 \ldots f_n\) are defined by mathematical relations (usually equations).
Equational Logic: Variations

• **Sorted EqL** -- Signature includes sorts (data types) and operation arity is sorted ( \(+ : \text{Nat Nat} \rightarrow \text{Nat}\) )

• **Order Sorted EqL** -- SortedEqL with a partial order on the sorts \((\text{Zero} < \text{Nat}, \text{NZNat} < \text{Nat})\)

• **Membership EqL** -- connected components of the sort partial order become Kinds, which can contain additional `error` elements. Terms are typed at the kind level.
Q: What is rewriting logic?

A1: A logic for executable specification and analysis of software systems, that may be concurrent, distributed, or even mobile.

A2: A logic to specify other logics or languages

A3: An extension of equational logic with local rewrite rules to express
  1. concurrent change over time
  2. inference rules
Rewrite Theories

0. Rewrite theory: (Signature, Labels, Rules)

0. Signature: (Sorts, Ops, Eqns) -- an equational theory
   - Describe data types, system state

0. Rules have the form \( \text{label : } t \rightarrow t' \text{ if cond} \)

0. Rewriting operates modulo equations
   - Describes computations or deductions, also modulo equations
**Deduction/Computation Rules**

**One step rewrite:**

- Reflexivity:

- Congruence:

- Replacement:

Closed under
Rewriting Logic is Reflective

A reflective logic is a logic in which important aspects of its metatheory (entailment relation, theories, proofs) can be represented at the object level in a consistent way.

This has many applications:

- Transforming, combining rewrite theories
- Execution / proof strategies
- Meta tools: theorem provers, coherence checkers ...
- Language extensions: object-oriented, real-time, ...
- Higher-order capabilities in a first-order framework
- Model of reflection for concurrent objects
- Domain specific assistants
Rewriting Logic as a Semantic Framework

A wide variety of models of computation can be naturally expressed as rewrite theories

- Lambda Calculus, Turing Machines
- Concurrent Objects and Actors
- CCS, CSP, pi-calculus, Petri Nets
- Chemical Abstract Machine, Unity
- Graph rewriting, Dataflow, Neural Networks
- Real-time Systems
- Physical Systems (Biological processes)
Rewriting Logic as a Logical Framework

A wide variety of logics have a natural representation as rewrite theories

- Equational logic
- Horn logic
- Linear logic
- Quantifiers
- Higher-order logics (HOL, NuPrl)
- Open Calculus of Constructions
- Rewriting logic
What Rewriting Logic Is/IsNot

0 A rewrite theory plus a term describes a state transition system
   - states can have rich algebraic structure
   - transitions are local and possibly concurrent

0 The equational part of a rewrite theory is similar to a term rewriting system (modulo ACI axioms)
   - it is usually desirable for equations to be CR and terminating
   - rewrite rules are often non-deterministic and non-terminating
Maude is a language and environment based on rewriting logic.

See: http://maude.cs.uiuc.edu

Features:
- Executability -- position /rule/object fair rewriting
- High performance engine --- \{ACI\} matching
- Modularity and parameterization
- Builtins -- booleans, number hierarchy, strings
- Reflection -- using descent and ascent functions
- Search and model-checking
Maude Formal Methodology

S |= \Phi

model checking

S |- \Phi

theorem provng
ADTs in Maude

ADTs are specified in Maude using functional modules

```
  fmod <modname> is
    <imports> *** reuse, modularity
    <sorts> *** data types and subtyping
    <opdecls> *** names/and arities of operations
    <eqns> *** how to compute functions
  endfm
```

0 The module components can appear interleaved and in any order

0 The semantics of an fmod is an initial model
   - no junk---every data value is constructable
   - no confusion---two terms are equal only forced by the equations
Maude System Specifications

A Maude specification has two parts

- An equational part describing structure and properties of system states (and ADT)
- A rules part specifying how the system might change over time.
Operator declarations

The `<opdecls>` part of a module consists of operator declarations having the form

\[
\text{op } \langle \text{opname} \rangle : \langle \text{argSorts} \rangle \rightarrow \langle \text{resultSort} \rangle \ [\langle \text{attributes} \rangle] .
\]

`opname` can be an identifier (without special characters) or identifiers interleave with `_'s (mixfix notation).

`<attributes>` for binary operators include assoc, comm, id:

\[
\langle \text{term} \rangle
\]

Including assoc declares the operator to be associative, ...

*** unary constructor

\[
\text{op } s_\_ : \text{Nat} \rightarrow \text{Nat} \ [\text{ctor}] .
\]

*** unary operator

\[
\text{op sub}_1 : \text{Nat} \rightarrow \text{Nat} .
\]

*** associative commutative infix operator with identity

\[
\text{op } _+\_ : \text{Nat Nat} \rightarrow \text{Nat} \ [\text{assoc comm id: 0}] .
\]
The NAT and NATLIST Data Types

The natural numbers are specified by

```plaintext
fmod NAT is
  sorts Zero NzNat Nat .
  subsort Zero NzNat < Nat .
  op 0 : -> Zero [ctor] .
  op s_ : Nat -> NzNat [ctor] .
....
endfm

Examples: 0, s s s 0 (also printed as 3)
```

Lists of natural numbers are specified by

```plaintext
fmod NATLIST is
  pr NAT .
  sort NatList . subsort Nat < NatList .
  op nil : -> NatList .
....
endfm

Example lists: nil, 1 2 3
```
Defining NatList Functions I

Definition by pattern matching (extending NATLIST)

var n: Nat. var nl: NatList .

op head : NatList ~> Nat .
op tail : NatList ~> NatList .
eq head(n nl) = n .
eq tail(n nl) = nl .  eq tail(nil) = nil .

Consider the list : 1 2 3
It matches the pattern (n nl) with n := 1, nl := 2 3

Maude> reduce head(1 2 3) .    Maude> red tail(1 2 3) .
result NzNat: 1                  result NatList: 2 3

Maude> red head(nil) .          Maude> red tail(nil) .
result [Nat]: head(nil)         result NatList: nil
Define a function `sum' that adds the elements of a NatList.

var n : Nat. var nl : NatList.

op sum : NatList -> Nat.

eq sum(nil) = 0.
eq sum(n nl) = n + sum(nl).

The equations are used to reduce terms to canonical form

\[ \text{sum}(1 \ 2 \ 3) = 1 + \text{sum}(2 \ 3) = 1 + 2 + \text{sum}(3) = 1 + 2 + 3 = 6 \]

Maude> reduce sum(1 2 3).
result NzNat: 6
Define a function `isElt' that takes a Nat and a NatList and returns true if the Nat is in the NatList and false otherwise.

```plaintext
vars n n': Nat. var nl: NatList .
op isElt : Nat NatList -> Bool .
eq isElt(n, n' nl) =
    if n == n' then true else isElt(n,nl) fi .
eq isElt(n, nil) = false .
```

Examples:
- `isElt(4, 4 6 3)` = true
- `isElt(4, 7 2 4 6)` = `isElt(4,2 4 6)`
- `isElt(4,nil)` = false
Defining NatList Functions IV

Alternate definition of `isElt': via AC pattern matching

\[ \begin{align*}
  \text{vars } n : \text{Nat} & .\quad \text{vars } nl \text{ nl'} : \text{NatList} . \\
  \text{op } is\text{Elt} : \text{Nat NatList } \rightarrow \text{Bool} . \\
  \text{eq } is\text{Elt}(n, \text{nl n nl'}) = \text{true} . \\
  \text{eq } is\text{Elt}(n, \text{nl}) = \text{false } [\text{owise}] .
\end{align*} \]

Examples:

\( is\Elt(4, 7 \ 2 \ 4 \ 6 \ 3) \) matches the 1st equation
  taking \( n := 4, nl := 7 \ 2, nl' := 6 \ 3 \)
  and so reduces to \( \text{true} \)

\( is\Elt(4, 7 \ 2 \ 3) \) does not match the 1st equation, so
  reduces to \( \text{false} \) by the \( [\text{owise}] \) equation
maude is an alias to the maude executable (maude.linux)

To try the NatList examples:

0  $> cd <pathToExamples>MaudeExamples
0  $> maude nat-list

\longleftrightarrow

--- Welcome to Maude --
\longleftrightarrow
Maude alpha89b built: Apr 25 2007 16:19:05
Copyright 1997-2007 SRI International
Thur Jun 28 07:42:00 2007

0  Maude> red head(1 2 3) .
reduce in NATLIST : head(1 2 3) .
rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNat: 1
Caveats

Caveats for writing Maude specifications:
0 Don’t forget the period at the end of a declaration or statement! .
0 Check keywords / symbols are correct.
   - correct use of fmod, mod
   - op vs ops
   - variables not used before bound
0 Make sure all cases are covered in defining equations.
Specifying behavior/dynamics

System dynamics are specified in system modules using rewrite rules

```plaintext
mod <modname> is

*** functional part
<imports>  *** reuse, modularity
<sorts>    *** data types and subtyping
<opdecls>  *** names/and arities of operations
<eqns>     *** how to compute functions

***
<rules>

endm
```

A system module defines a set of computations (aka derivations) over the ADT specified by the functional part.
Rule declarations

The <rules> part of a system module consists of rule declarations having one of the forms

\[ rl[\langle id \rangle]: \langle lhs \rangle \Rightarrow \langle rhs \rangle . \]

\[ crl[\langle id \rangle]: \langle lhs \rangle \Rightarrow \langle rhs \rangle \text{ if } \langle cond \rangle . \]

\langle lhs \rangle, \langle rhs \rangle, \langle cond \rangle are terms, possibly containing variables. A rule applies to a term \( T \) if there is a substitution \( S \) (mapping variables to terms) such that \( S\langle lhs \rangle \) is a subterm of \( T \) (\( \langle lhs \rangle \) matches a subterm of \( T \)) and \( S \langle cond \rangle \) rewrites to \text{true}.

In this case \( T \) can be rewritten by replacing the matched subterm by the matching instance of \( \langle rhs \rangle \) (\( S \langle rhs \rangle \)).
Rule application

Suppose we have the following rules (in a suitable module).

\[ r_1[fa2b]: f(a,x) \Rightarrow f(b,x) . \]
\[ r_1[hh2h]: h \ h(y) \Rightarrow h(y) . \]

then
\[ g(c,f(a,d)) \Rightarrow g(c,f(b,d)) \]
using \([fa2b]\) and congruence

and
\[ h \ h(g(c,f(a,d))) \Rightarrow h(g(c,f(b,d))) \]
also using replacement.

Before applying a rewrite rule, Maude reduces a term to canonical form using equations. The rule lhs is not reduced.
Petri nets (Place-transition nets) are a formalism for modeling concurrent system behavior.

- Places represent properties or component features.
- System state is represented by marking of places (what properties hold or features are present)
- Transitions specify state change as transfer of marks from one place to another
- Petri nets have a natural graphical representation and a natural representation in Maude
A simple Petri net computation
Petri Net Example

A vending machine
The vending machine in Maude

mod VENDING-MACHINE is
  sorts Coin Item Place Marking .
  subsorts Coin Item < Place < Marking .
  op null : -> Marking . ** empty marking
  ops $ q : -> Coin .
  ops a c : -> Item .
  op _ _ : Marking Marking Marking -> Marking
          [assoc comm id: null] . ** multiset
  rl[buy-c]: $ => c .
  rl[buy-a]: $ => a q .
  rl[change]: q q q q => $ .
endm
What about AC Rewriting?

For terms constructed from operators that are declared with attributes such as assoc, comm and / or id, rule matching is extended to match AC terms to segments.

$q \text{ M:Marking} q \text{ matches a subterm of } a \ q \ c \ \$ \ q \ q$

with $\text{ M:Marking} := c \ \$

$q \text{ M:Marking} a \text{ M1:Marking} \text{ matches a subterm of } \$ \ q \ c \ \$ \ q \ a$

with $\text{ M:Marking} := c \ \$ \ q \text{ and } \text{ M1:Marking} := \text{ nil}$
Using the vending machine

What is one way to use 3 $s$?

Maude> rew $ $ $ .
result Marking: q a c c

How can I get 2 apples with 3 $s$?

Maude> search $ $ $ =>! a a M:Marking .

Solution 1 (state 8)
M:Marking --> q q c

Solution 2 (state 9)
M:Marking --> q q q a

No more solutions.
states: 10  rewrites: 12)
Model checking

Algorithm for determining if $M \models P$ ($M$ satisfies $P$) where $M$ is a `model' and `P' is a property.

In our case a model is a Maude specification of a system together with a state of interest.

A property is a `temporal logic' formula to be interpreted as a property of computations of the system (linear sequences of states generated by application of rewrite rules).
Model checking

Temporal formulas are built from propositions about states, using boolean connectives, and temporal operators [] (always) and <> (eventually).

Satisfaction for \( M \models A \) is axiomatized by equations

\[ M \models P \text{ if } C \models P \text{ for every computation } C \text{ of } M \]

\[ C \models A \text{ if the first state of } C \text{ satisfies } A \]

\[ C \models []P \text{ if every suffix of } C \text{ satisfies } P \]

\[ C \models <>P \text{ if some suffix of } C \text{ satisfies } P \]
Model checking: Defining properties

mod MC-VENDING-MACHINE is
inc VENDING-MACHINE . inc MODEL-CHECKER . inc NAT .

op vm : Marking -> State [ctor] .
op countPlace : Marking Place -> Nat .
op value : Marking -> Nat . *** in units of quarters
....

ops fiveQ lte4Q : -> Prop .
ops nCakes nApples val : Nat -> Prop .

eq vm(M) |= fiveQ = countPlace(M,q) == 5 .
eq vm(M) |= lte4Q = countPlace(M,q) <= 4 .
eq vm(M) |= nApples(n) = countPlace(M,a) == n .
eq vm(M) |= val(n) = value(M) == n .
endm
Model checking the vending machine I

Starting with 5 $s, can we get 6 apples without accumulating more than 4 quarters? Model check the claim that we can't.

Maude>
    red modelCheck(vm($ $ $ $ $),[]~(lte4Q U nApples(6))) .
result ModelCheckResult: counterexample(
    {vm($ $ $ $ $),'buy-a}
    {vm($ $ $ $ q a),'buy-a}
    {vm($ $ $ q q a a),'buy-a}
    {vm($ $ q q q a a a),'buy-a}
    {vm($ q q q q a a a a),'change}
    {vm($ $ a a a a),'buy-a}
    {vm($ q a a a a a a),'buy-a},
    {vm(q q a a a a a a),deadlock})

A counterexample to a formula is a pair of transition lists representing an infinite computation which fails to satisfy the formula. A transition is a state and a rule identifier. The second list (deadlock) represents a loop.
Model checking the vending machine II

Starting with 5 $s, can we get 5 quarters then 6 apples?

Maude>
red modelCheck(vm($ $ $ $ $),
               []~(<>fiveQ /\ (fiveQ |-> nApples(6))) .
result ModelCheckResult: counterexample(...)

Is value conserved?

Maude> red modelCheck(vm($ $ $ $ $),[]val(20) .
result Bool: true
**Extracting Paths from CounterExamples**

A simple path from a given initial state $S_0$, to a state satisfying a property $P$ is a list of rules together with a state $S_1$ satisfying $P$ such that applying the rules starting with $S_0$ leads to $S_1$.

One way to find a simple path is to model check the assertion that from $S_0$ no state can be reached satisfying $P$: `modelCheck(S0, ~ <> P)`. If there is a reachable state satisfying $P$, a counterexample will be returned. The counterexample contains the list of rules applied.
Using findPath

The module SIMPLE defines a function findPath that extracts a simple path from a counterexample and a property.

mod FP-VENDING-MACHINE is
    inc MC-VENDING-MACHINE .
    inc SIMPLE .
endm

Maude> red findPath(vm($ $ $ $), nApples(5)) .
result SimplePath:
    spath(‘buy-a ‘buy-a ‘buy-a ‘buy-a ‘change ‘buy-a,
        vm(q a a a a a a)) .
A Vending Machine Mall

To illustrate systems states with more structure, consider a `Mall` which contains possibly multiple vending machines, each vending a specific item. In addition the Mall contains `Goods`, items purchased, and coins available to make purchases.

We add rules to put coins into machines and extract items purchased. The original vending machine rules are used to turn coins into items.
The Mall specification

mod VENDING-MALL is
  inc VENDING-MACHINE .
  sorts Machine Goods Mall .
  subsort Machine Goods < Mall .

  op mt : -> Mall .
  op __ : Mall Mall -> Mall [ctor assoc comm id: mt] .

  op m : Item Marking -> Machine [ctor] .
  op g : Place -> Goods [ctor] .

  var M : Marking . var C : Coin . var I : Item .

  rl [coin-in] : m(I, M) g(C) => m(I, M C) .
  rl [apple-out] : m(a, M a) => m(a, M) g(a) .
  rl [cake-out] : m(c, M c) => m(c, M) g(c) .

endm
Shopping in the Mall

Consider an initial state with two vending machines, one for apples, one for cakes, and 4 $s.

Default shopping yields 2 apples.

Maude> rew m(a,null) m(c,null) g($) g($) g($) g($) . result Mall: g(a) g(a) m(a, q q c c) m(c, null)

Can I get 4 apples and a cake?

Maude> search m(a,null) m(c,null) g($) g($) g($) g($) =>! X:Mall g(a) g(a) g(a) g(a) g(c) . No solution.

But I can get 4 apples and 4 quarters stuck in the machine!

search m(a,null) m(c,null) g($) g($) g($) g($) =>! m(a, q q q q) X:Mall . Solution 1 (state 725) X:Mall --> g(a) g(a) g(a) g(a) m(c, null)
Reflection: Meta-representation of terms

- A constant is meta-represented by a quoted identifier (qid) where the identifier is its name dotted with the name of its (least) sort.
  - "$\cdot\text{Coin}$ meta-represents the term $\$
  - "$\cdot\text{a.Item}$ meta-represents the term $a$
- A variable is meta-represented by a qid containing its name and the name of its sort separated by :
  - "$\cdot\text{M:Marking}$ meta-represents the variable $\text{M:Marking}$
- The meta-representation of a composite term has the form $\text{op}[t_1,...,t_k]$ where op is a qid nameing the operator
  - "$\cdot\text{__}[\text{'q.Coin,}'\text{q.Coin},'\text{q.Coin,}'\text{q.Coin}]$ is the meta-representation of $q q q q q$. 
Reflection: Ascent/Descent functions

• upTerm(a) = ‘a.Item the meta-representation of a term

• upRls(modname,bool)
  • the set of rules (meta-represented) in the module with name modname (and its imports if bool is true)

• metaReduce(module, term) = {term’,type} = res

• metaXapply(module,term,rid,subst,start,bound,n) = res = {term’,type,subst’,context}
  • start,bound bound the search for a match
  • n is the solution number

• getTerm(res) = term’
Reflection example: Module analysis

fmod CONSUMERS is
    inc MY-META .
    var M : Module . var T : Term .
    var R : Rule . var RS : RuleSet .

    op consumes : Module Rule Term -> Bool .
    eq consumes(M,R,T) =
        *** assumes M defines 'has
getTerm(metaReduce(M,'has[getLhs(R),T] ))
        == 'true.Bool .

    op consumerRules : Module Term -> QidSet .
    op consumerRules : Module RuleSet Term -> QidSet .

    eq consumerRules(M,T) =
        consumerRules(M,upRls(getName(M),true),T) .
    eq consumerRules(M,none,T) = none .
    eq consumerRules(M,R RS,T) =
        (if consumes(M,R,T) then getRuleId(R) else none fi);
        consumerRules(M,RS,T) .

endfm
Reflection Example: Module analysis cntd.

mod VEND-X is
    inc VENDING-MACHINE .

    vars M0 M1 : Marking .
    op has : Marking Marking -> Bool .

    eq has(M0 M1, M1) = true .
    eq has(M0, M1) = false [owise] .
endm

select CONSUMERS .

Maude> red consumerRules(['VEND-X','$.Coin]) .
result: QidSet 'buy-a ; buy-c

Maude> red consumerRules(['VEND-X','q.Coin]) .
result: Qid 'change
Reflection example: Strategy

fmod METAREWRITE-LIST is
    inc MY-META .
    var M : Module .  vars T T’: Term .
    var res : Result4Tuple? .
    var rid : Qid .  var ql : QidList .
    op metaRewList : Module QidList Term -> Term .
    eq metaRewList(M,nil,T) = T .
    ceq metaRewList(M,rid ql,T) = metaRewList(M,ql,T')
        if res := metaXapply(M,T,rid,none,0,unbounded,0)
        /
        T' := if res :: Result4Tuple
            then getTerm(res)
            else T fi .

endfm
Reflection example: Strategy cntd.

Maude> red metaRewList(['VENDING-MACHINE'],
                          'change 'buy-a,'__[['q.Coin,'q.Coin,'q.Coin,'q.Coin']]) .

result GroundTerm: '__[['q.Coin,'a.Item]

Maude> red metaRewList(['VENDING-MACHINE'],
                          'buy-a 'change,'__[['q.Coin,'q.Coin,'q.Coin,'q.Coin']]) .

result Constant: '$.Coin
Maude Exercises

The folder MaudeExamples contains the code for all the examples.

See README.txt for a summary of the file contents.

See exercises.txt for instructions.