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Abstract. Executable symbolic models have been successfully used to analyze
networks of biological reactions. However, the process of building an executable
model from published experimental findings is still carried out manually. The
process is very time consuming and requires expert knowledge. As a first step
in addressing this problem, this paper introduces an automated method for de-
riving executable models from formalized experimental findings called datums.
We identify the relevant data in a collection of datums. We then translate the
information contained in datums to logical assertions. Together with a logical
theory formalizing the interpretation of datums, these assertions are used to in-
fer a knowledge base of reaction rules. These rules can then be assembled into
executable models semi-automatically using the Pathway Logic system. We ap-
plied our technique to the experimental evidence relevant to Hras activation in
response to Egf available in our datum knowledge base. When compared to the
Pathway Logic model (curated manually from the same datums by an expert), our
model makes most of the same predictions regarding reachability and knockouts.
Missing information is due to missing assertions that require reasoning about the
effects of mutations and background knowledge to generate. This is being ad-
dressed in ongoing work.

1 Introduction

Executable models of signal transduction provide insights into how cells work, and a
means to understand and predict the effects of perturbations and mutations, key for cel-
lular understanding of disease and therapeutics. For example, using an executable model
one can apply algorithms to determine how one can prevent a given state from being
reached or to compute alternative execution paths that reach a given state. Developing
such models is extremely difficult. It requires collecting, organizing and interpreting
experimental evidence, and assembling rules representing hypothesized biochemical
reactions that make up a signaling network. This is very labor intensive and inferring a
rule from experiments requires substantial biological knowledge. Several curated mod-
els of signaling and metabolic pathways are available [3, 11, 17–19]. However, there is
a great need for tools to help automate the curation of executable models.

The problem of automatically constructing executable models from experimental
evidence has several aspects including: (1) formal representation of experimental find-
ings, (2) formal representation of rules as elements of executable models, (3) extracting
findings from papers, (4) algorithms for inferring rules from findings and (5) algorithms



for assembly of executable models. This paper addresses aspects (1), (2) and (4). The
contribution is three fold:

1. We describe a formal representation of experimental evidence called datums. Each
datum captures relevant information about one or more experiments recording condi-
tions under which a specific state or change in state (modification, activity, location)
of a protein or other biochemical happens.

2. We define a language of logical assertions that corresponds to the elements of a da-
tum, and a translation from datum syntax to logical assertions.

3. We define axioms that capture the semantics of datums interpreted as partial infor-
mation about rules to be used as components of an executable model. The logic is
that of Answer Set Programs [9] and we use an existing engine (DLV [12]) to derive
minimal models called answer sets. Each answer set corresponds to one reaction rule.
These models are then parsed into rules of an executable model.

Aspect (3) is being addressed as part of an ongoing DARPA project [7] to advance ma-
chine reading and reasoning techniques. We use Pathway Logic (PL) [13] as the formal
system for representing and querying executable models of cellular processes. Auto-
mated analysis techniques such as forward collection and model-checking are used to
assemble executable models and execution pathways by specifying a problem of inter-
est (experimental conditions, targets, ...). The PL algorithms rely crucially on the fact
that the rules are curated to work together. For example, rules that connect must use the
same level of detail concerning location and modifications of participants. In contrast,
automatically inferred rules capture all the relevant available experimental information,
resulting in a knowledge base that is more precise and extensible. However, the model
assembly process will require automation of the process of transforming rules to work
together, without losing information unnecessarily. This is the topic of ongoing work.

We applied our algorithms to a collection of datums supporting a model of activation
of Hras in response to Egf. The model is part of the PL collection of models manually
curated by an expert. Although this first version of the rule generation logic does not
account from some of the information in datums, the resulting model makes the same
predictions as the curated model concerning response to Egf stimulation and effects of
knockouts, with a small number expected exceptions.

Plan. Section 2 gives a brief overview of Pathway Logic executable models and an
informal introduction to datums. Section 3 gives an informal introduction to the rule
inference process using an Hras activation rule as an example. Section 4 presents the
answer set programming axioms/rules of the datum logic. Section 4.2 describes the
mapping of datums to assertions in the logic. Section 5 presents the Hras case study.
Section 6 concludes with related and future work.

2 About Pathway Logic and Datums

2.1 Pathway Logic

Pathway Logic (PL) [13] is a system for modeling and reasoning about cellular pro-
cesses such as signal transduction, metabolism, and cell-cell communication in the im-
mune system. The PL execution model is based on rewriting logic [14,15]. In PL, a cell
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state is represented as a ‘soup’ of occurrences, where each occurrence has three compo-
nents: a protein or other biomolecule (gene, metabolite, . . . ), a modifier, and a location.
The modifier indicates the state of the protein, including binding of small molecules or
phosphates, or ability to act on other proteins (enzyme activity). For example, the term
< [Hras - GTP], CLi > is the occurrence of the protein Hras modified by binding
to the small molecule GTP (Guanosine-5’-triphosphate), attached to the inside of the
cell membrane (CLi). The names used to form occurrences are semantically grounded
using meta-data to provide links to standard databases.

Signal transduction steps are formalized as local rewrite rules operating on the rel-
evant part of the cell state. Each rule describes a change in state of a small number
of biomolecules (often just one) and the biological context that enables the change.
A PL Rule Knowledge Base (RKB) consists of symbolic rules containing variables that
range over a finite set of proteins, modifications or locations. STM (Signal Transduction
Model) is a curated PL RKB that constitutes an executable model of signal transduction
in the following sense: given an initial state called a (Petri) dish, which is a set of occur-
rences representing an experimental setup, the rules can be applied repeatedly, using the
Maude rewrite engine [6], to transform the state. This represents a possible sequence of
signaling events in a cell. A set of rule instances that can be applied/fired in some order
from an initial state is called an execution pathway. Specific model networks can be
obtained from an RKB by starting with a dish and using forward collection 3 to collect
all rule instances that might fire in an execution pathway of this dish. Such models can
naturally be viewed as Petri Nets [21].

2.2 Datums: Formal Representation of Experimental Results

The PL STM model is an RKB whose rules are inferred from cell culture and test tube
experiments. In cell-based experiments, cells are grown under known conditions. The
cells may be modified by overexpressing some (possibly mutated) proteins, or knocking
out some proteins (preventing expression). The resulting population of cells is treated
with a stimulus or stress. Some property of the cells is measured before treatment and
at one or more times after treatment to determine change in state, if any. The procedure
that measures the property change is called an assay. Experiments can also be done in
a test tube, and some experiments observe untreated cells.

Every rule in the STM RKB is associated with an evidence file, which contains
the collected experimental findings giving evidence supporting the rule. These finding
are presented in a formal language called datums. A datum describes a collection of
experimental findings, all based on the same assay, including a main observation, and
effects of perturbation of the experimental system. Technically, the collection consists
of separate experiments, but they are intended to be interpreted together, so they are
collected in a single datum with extras. There are two main types of datum, state datums
and change datums, corresponding to two basic types of biological experiments. State
datums concern properties of cells in a defined state. Change datums summarize the
change in the state of something resulting from the addition of a stimulus to cells. Rules
are derived from change datums.

3 Forward collection in this case is application of rules without removing the premises.
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xHras[tAb] GTP-association[BDPD] is increased irt Egf (5 min)
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Fig. 1: The elements of a datum.
Datum Structure. The syntax of a datum is designed to be readable by an experimental
biologist, but constrained by structure rules and controlled vocabularies so it can be au-
tomatically parsed into a formal data structure. The full collection of datums collected
for the STM RKB can be accessed via a web query page at light.csl.sri.com/
datum. A more detailed description and query examples can be found at pl.csl.sri.
com/datumkb.html. The curators notebook (pl.csl.sri.com/CurationNotebook/
index.html) contains an intuitive description of datum syntax, catalogs of assays (with
their detection methods and other attributes) and cell lines, and a glossary of terms.

The datum in Figure 1 is a change datum that records an experiment in which the
binding of GTP to the protein Hras is increased after addition of Egf (Epidermal Growth
Factor) to a cell for 5 minutes. The first line contains the subject (Hras), the assay
(GTP-association), the treatment (Egf) and the change (increased). The parenthetical
text (times) at the end says the measurement was taken 5 minutes after the treatment.
GTP-association is an assay that measures the amount of Hras bound to GTP. The first
element of the second line describes the cellular environment. In this case VERO cells
(a defined cell line) transfected with Gab1 (xGab1), grown in BMLS (Basal Medium
Low Serum). The purpose of transfection is that it results in overexpression. The second
element is called an “extra”. It records the result of an experiment that is a perturbation
of the original experiment. In this case, the cells were transfected with Gab1 with a
point mutation (xGab1(Y627F)), in which the tyrosine (Y) at position 627 is replaced
by Phenylalanine (F) instead of wild type Gab1 ([substitution]). The third element gives
the PubMed identifier of the paper in which the experiment was reported, and the figure
where the experimental results were found (15574420-Fig-5a). Source information is
not directly used to infer rules, but is crucial for review and updates.

3 Inferring Rules from Datums: an Example
The key ingredients of a datum for rule inference are the subject, assay, treatment,
observed change, and cellular environment. Such experimental information is used to
constrain the elements of a rule. Specifically, for each assay that measures a change
in protein state or location, we associate a rule template that captures the change. The
template uses variables for the assay parameters and for additional requirements. The
additional requirements can be determined by extras, or by additional experiments. The
rule template for a GTP-association assay is

TC C < [G - gmods], Lg > < [P - GDP pmods], Lp > =>

TC C < [G - gmods], Lg > < [P - GTP pmods], Lp >
(1)

TC represents the treatment complex that forms to initiate the signal propagation, typi-
cally a ligand bound to its activated receptor. C stands for unknown requirements. P is
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the subject of the assay, Lp is a variable representing the cellular location of P, while G
stands for some GEF (Guanosine Exchange Factor) that catalyzes the reaction. pmods
and gmods represent the modification state of P and G, respectively. Finally Lp and Lg
are the locations of P and G, respectively. Lp, Lg, pmod and gmod must be constrained
by additional experiments, or background knowledge.

We can use the datum in Figure 1 to partially instantiate the GTP-association rule
template as follows.

EgfTC C < [G - gmods], Lg > < [Hras - GDP pmods], CLi > =>

EgfTC C < [G - gmods], Lg > < [HrasP - GDP pmodsd ], CLi >
(2)

where EgfTC is the complex that forms when Egf binds to the Egf receptor, which
subsequently becomes active and autophosphorylates: < [EgfR - Yphos] : Egf,
EgfRC >. We used background knowledge that Hras is anchored to the inside of the
plasma membrane to instantiate Lp as CLi.

The next two datums provide evidence that Sos1 is a GEF for Hras.

Datum 1: rHras GDP-dissociation[3H-GDP] is increased by xSos1[tAb]IP

cells: none, source: 15039778-Fig-2c

Datum 2: xHras[tAb]IP GTP-association[TLC] is increased itpo xSos1

cells: HEK293 in BMS, source: 10896938-Fig-1c

The first datum says that when you put recombinant Hras (rHras) in a test tube (cells:
none) with Sos1 that has been immunoprecipitated (xSos1[tAB]IP) from HEK293
cells, [Hras - GTP] increases. This is direct evidence that Sos1 can act as a GEF in a
test tube. We say Sos1 is a ttGef (a test tube GEF) for Hras.

Additional evidence that this happens in live cells is needed. The second datum
provides such evidence. itpo is a treatment type in which a plasmid for the treatment
(Sos1) is introduced into a cell culture and incubated for sufficient time for the treatment
protein to become overexpressed. This datum tells us that it is possible that Sos1 can act
as a GEF in a cellular environment. We say that Sos1 is an itpoGef for Hras. There are
datums that report that knocking out Sos1 does not prevent the GDP-GTP exchange.
This tells us that there are additional GEFs to be discovered.

Finally, the following datum is evidence for the gabs:GabS requirement.

Hras[Ab] GTP-association[BDPD] is increased irt Egf (times)

cells: mEFs in BMLS, source: 12629518(D) partially reqs: Gab1 [KO]

It says that the reaction partially requires Gab1, determined by removing Gab1 from the
cellular environment ([KO]). This suggests that Gab1 has a role, but that there may be
other proteins that can play the same role as Gab1 in the activation of Hras in response
to Egf. To gain confidence in this hypothesis and determine candidate similar proteins,
more evidence or background knowledge is needed. This will be the topic of future
work and extensions of the datum logic.

4 A Logical Specification for Datums

The interpretation of datums is formalized using Answer Set Programming (ASP). We
start by briefly explaining ASP before proceeding with the logical specifications of
datums.
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Answer Set Programs An ASP program is a collection of clauses of three forms:
(1) D. (2) D :- b1,...,bn. (3) :- b1,...,bn.

where D is either a ground fact, a, or a disjunction of the form a1 v a2, of two ground
facts a1 and a2. The symbols b1, . . ., bn are ground facts or negated ground facts
written not a, where not is negation. The symbol :- should be interpreted as reversed
implication and the symbol v as disjunction. Clauses of type (3) are called constraints,
specifying that b1, . . ., bn should not all be true.

The meaning of an ASP program is a set of ground facts called an Answer Set. An
answer set of a program P contains a minimal number of facts that makes each clause
of the program P true. For a formal definition see [9, 12].

There are a number of engines that can compute the answer sets of an ASP program.
In the present work we have used the DLV engine [12]. Following the usual convention,
variables appearing in programs are considered to be shorthand for the set of all possible
ground instantiations using the constant and function symbols appearing in the program
itself.

4.1 Assertions and Inference Rules for Datums

Some of the main predicates used in the logical theory are given below:
– subject(S,Dt) denotes that S is the subject of the datum Dt.
– assay(Type,Aux,Dt) denotes that Type is the assay type specified by Dt, for ex-

ample, a phosphorylation or GTP-association. Aux is used for assay parameters such
as modification sites (phos!Y627) or hooks in a binding assay (none is used if there
are no relevant parameters).

– treatment(T,Dt) denotes that T is the treatment specified by Dt.
– increased(Dt), irt(Dt) denote that Dt specifies an increase in the changed state

of the subject in response to the treatment.
For example, the assertions for the datum of Figure 1 (Section 2) are given below:

datum("hras39"). subject("Hras","hras39").

assay("GTP-Association",none,"hras39"). irt("hras39").

treatment("Egf","hras39"). increased("hras39").

We also have a collection of assertions that are common knowledge, or are implicit
in datums collected from experiments by convention. The common knowledge asser-
tions constitute a library used in the inference of the executable rules. An example is
the fact that EgfR and its modifications are located at EgfRC. This is specified by as-
sertions of the form: location(EgfR, EgfRC, ck), where ck stands for common
knowledge.

Handling Multiple Datums As described in Section 3, some datums contain the ev-
idence for the changes of the subject of a reaction rule. We call these main datums.
Other datums, called auxiliary datums, contain evidence about non-subject elements of
the reaction, for example, required biomolecules or GEFs. We distinguish these datums
using the assertions of the form useM(Dt) and useA(Dt), where the former specifies
that Dt is the main datum and the latter that Dt is an auxiliary datum. We specify that
an answer set should have exactly one main datum. We do not show the rules here.
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Inferred Assertions We implemented an ASP program that takes the assertions of a
datum and generates answer sets, each of which corresponds to a PL rule. In particular,
the ASP will derive the following facts:
– occBf(X1,L1) denote that before the reaction, X1 is located at L1.
– occAf(X2,L2) denotes that after the reaction, X2 is at location L2.
– occ(X,L) denotes that the reaction requires X at location L in order to occur. Such

an assertion can be used for a treatment complex or a require composite.
– moveRule and reactRule denote that the rule to be extracted is either a rule speci-

fying that the subject moves from one location to another without changing its mod-
ifications or it is a rule specifying that the subject changes its modifications without
changing its location. This separation between move and react rules provides a finer
grained specification of a model that simplifies the (meta) reasoning.

These assertions are used to construct rules in our executable model of the form de-
picted in Eq. 1. Before we explain how these facts are derived, we illustrate how answer
sets correspond to rules by example. Consider two answer sets M1 and M2, where M1
contains the set of facts to the left and M2 contains the set of facts to the right:


moveRule,

occBf(Hras - mods(Hras),L(Hras)),

occAf(Hras - mods(Hras),EgfRC),

occ(Egf:EgfR-Yphos,EgfRC)





reactRule,

occBf(Hras - mods(Hras) - GDP,L(Hras)),

occAf(Hras - mods(Hras) - GTP,L(Hras)),

occ(Egf:EgfR-Yphos,EgfRC),

occ(Sos1 - mods(Sos1),L(Sos1)),

occ(Gab1 - mods(Gab1),L(Gab1))


Here mods(X) and L(X) are variables that can be instantiated in our executable model
by any modifiers and locations, respectively. The answer set M1 specifies the rule below
where Hras - mods(Hras) moves from a generic location L(Hras) to the location
EgfRC in the presence of Egf:EgfR-Yphos at location EgfRC:

< Hras - mods(Hras), L(Hras) > < Egf:EgfR-Yphos, EgfRC > =>

< Hras - mods(Hras), EgfRC > < Egf:EgfR-Yphos, EgfRC >
(3)

The answer set M2 specifies the following rule where the subject Hras - mods(Hras)
- GDP at a generic location L(Hras) is modified to Hras - mods(Hras) - GTP in
the presence of Egf:EgfR-Yphos at location EgfRC, Sos1 - mods(Sos1) and Gab1
- mods(Gab1) at the generic locations L(Sos1) and L(Gab1), respectively:

< Hras - mods(Hras) - GDP, L(Hras) > < Egf:EgfR-Yphos, EgfRC >

< Sos1 - mods(Sos1), L(Sos1) > < Gab1 - mods(Gab1), L(Gab1) >

=>

< Hras - mods(Hras) - GTP, L(Hras) > < Egf:EgfR-Yphos, EgfRC >

< Sos1 - mods(Sos1), L(Sos1) > < Gab1 - mods(Gab1), L(Gab1) >

Specification of Assertion Reasoning As illustrated above, answer sets specify reaction
or move rules. This is specified by the following clauses and constraints:

reactRule v moveRule.

:- occBf(X1,L1), occAf(X2,L2), moveRule, X1 <> X2.

:- occBf(X1, L), occAf(X2, L), moveRule.

:- occBf(X1, L1), occAf(X2, L2), reactRule, L1 <> L2.

:- occBf(X, L1), occAf(X, L2), reactRule.
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The first clause specifies that answer sets must correspond to either move or react rules.
The constraints say that in the specification of move rules, the subject should not be
modified and it should move. Similarly for react rules, the location of the subject should
not change and the subject should be modified. There are other constraints that are
omitted, specifying that move rules only make sense when we know where the subject
moves to.

We derive occ, occBf and occAf assertions by deriving the corresponding argu-
ment, namely the corresponding possibly modified protein and its location. This is done
by using the following auxiliary predicates which will be used to infer the elements in
a rule of the form in Eq. 1:
– in(X) says that there is a possibly modified protein in the rule context, e.g., a treat-

ment complex. inBf(X) and inAf(X) specify the state of the subject protein before
and after the rule, respectively.

– loc(X,L) says that a non-subject element X is at location L. locBf(X,L) and locAf(X,L)
say that the location of the subject X is L before and after the reaction.

Using these assertions, we derive occ, occBf and occAf assertions using the clauses
below:

occBf(X,L(X)) :- inBf(X), reactRule.

occAf(X,L(X)) :- inAf(X), reactRule.

occ(X, L(X)) :- in(X), not hasLocation(X).

occBf(X - mods(X),L) :- subject(X,Dt),useM(Dt),locBf(X,L),moveRule.

occBf(X - mods(X),L(X)) :- subject(X,Dt),useM(Dt),not hasLocBf(X),moveRule.

occAf(modBy(X - mods(X),L) :- subject(X,Dt),useM(Dt),locAf(X,L),moveRule.

Here hasLocation(X) is an auxiliary assertion (rule omitted), denoting that it is pos-
sible to infer a concrete location for X.

Datum assertions are used to derive the more basic assertions in, inBf, inAf, loc,
locBf and locAf. For example, a GTP-association datum can be used in the following
clauses to derive inBf and inAf facts:

inBf(X - mods(X) - GDP) :- irt(Dt), increased(Dt),

assay(GTP-association, none, Dt), subject(X, Dt), useM(Dt).

inAf(X, mods(X) - GTP) :- irt(Dt), increased(Dt),

assay(GTP-association, none, Dt), subject(X, Dt), useM(Dt).

in(X) :- tc(X, Dt), useM(Dt).

These clauses specify that if the main datum is a GTP-association, then the subject
before the reaction should be modified with GDP and after with GTP. Moreover, the
treatment complex should be in the dish, specified by the last clause. Similar clauses
exists for the other types of datums, such as phosphorylation datums. In a similar way,
the location assertions loc, locBf and locAf are derived from datum assertions. Some
of them might be derived from common knowledge. We do not show these clauses here.

As described in Section 3, other datums provide information about the non-subject
elements in a reaction. For example, datums may provide information about GEFs.
These are specified by the assertions ttGEF(Q,S,Dt) and itpoGEF(Q,S,Dt). Both
denote that the datum Dt specifies that Q could be a GEF for the subject S. The former,
however, denotes that the experiment was carried out in the test tube, while the latter
denotes that the experiment was carried out using cells transfected with Q. We infer
these assertions from datum assertions as illustrated below.
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itpoGEF(Q,X,Dt) :- assay(GTP-association,none,Dt), itpo(Dt),

increased(Dt), subject(X, Dt), treatment(Q,Dt), useA(Dt).

ttGEF(Q,X,Dt) :- assay(GTP-association, none, Dt), by(Dt),

increased(Dt), subject(X, Dt), treatment(Q,Dt), useA(Dt).

4.2 Mapping Datums to Assertions

Each datum is mapped to a set of logical assertions that captures the subject, assay,
treatment, treatment type, and change elements of a datum. The mapping algorithm
takes as input the JSON representation of datums produced by the datum parser and
produces input for the DLV engine as described above.

We ignore datums where the interpretation is complex and often requires specific bi-
ological knowledge. We currently ignore any datum with no subject, a mutated subject,
a mutated treatment or more than one treatment.

In version 1 of the mapping algorithm, only extras of type “reqs” are captured as
their interpretation is relatively straightforward. Extending the mapping algorithm to
use “inhibited by” extras is a topic of future work.

Many datums report the same basic experiment, i.e. the same subject, assay and
treatment. If these datums also have the same change (result) then the mapping will
merge them, otherwise the datums are reported to the user as a conflict for manual
inspection. Conflicts may be particularly troubling because datums span many different
cell lines and cell types.

It is then a simple case of mapping each element of the datum (or merged datums)
to their logical assertions. For example, the datum from Figure 1 and the datum from
Section 3 giving the requirement for Gab1 can be merged, omitting elements not used
for generating assertions. The result is
xHras[tAb] GTP-association[BDPD] is increased irt Egf

inhibited by: xGab1(Y627F) [substitution] partially reqs: Gab1 [KO]

which maps to the following set of assertions:
datum("d1-d2"). subject("Hras", "d1-d2").

irt("d1-d2"). assay("GTP-association", none, "d1-d2").

increased("d1-d2"). treatment("Egf", "d1-d2").

reqs("Gab1", "d1-d2").

In the case of merged datums, the identifiers of the contributing datums are merged,
thus "d1-d2" above. This allows us to track evidence and eventually reason about the
quality/quantity of evidence used in generating a rule. The actual merged datum in our
case study (Section 5) combines 51 datums from the datum knowledge base.

Because we merge all datums for the same change, each set of assertions corre-
sponds to one rule in the model, and contains all information for the set of controls for
the rule. Note that auxiliary datums will still be used to find assay specific enzymes
such as GEFs or Kinases.

5 Signaling Model of Hras Activation by Egf

To test our rule inference tool, we used a model of Hras activation (GTP binding) in
response to Egf derived from the PL STM RKB as a ‘gold standard’. The Hras model
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Fig. 2: Hras Models

was derived by generating the subnet relevant to the goal < [Hras - GTP], CLi >.
An execution pathway in this model is shown in Figure 2a. The datums used as input
for the inferred model came from the evidence files for these rules together with files
containing evidence for Hras GEFs. The JSON datum representation was generated
using the datum parser, assertions were generated from the JSON using the assertion
mapping tool, and rules were then generated using the logic engine, and automatically
converted to Maude syntax.

As discussed in Section 1, the final step is assembly of these rules into a model—a
connected set of rules that can be executed to reach expected goals, including the activa-
tion of Hras. The basic assembly process is carried out using the PL model generation
process. We adapted the initial state for the STM Hras subnet to specify the desired
model. The abstraction of details to form a connected rule network was carried out by
hand, guided by principles developed by the curator of the STM model. Abstracting in-
cludes dropping site details from modifications and formalizing knowledge/conjectures
such as ‘modification implies activation’ in specific cases.

The resulting model is more detailed than the STM Hras model. This is expected,
due to the separation of modification and translocation rules (the STM model typically
collapses these into one step), and the use of location and modification variables that
have multiple possible instantiations.

The inferred model answers most of the queries supported by PL in the same way
that the STM Hras model does. Examples include reachability of given states, existence
of multiple execution paths to the Hras goal, and (RasGrp3,Sos1) as a double knockout
pair.

An execution pathway corresponding to the STM model pathway is shown in Figure
2b. The STM rule 197 for phosphorylation of Sos1 (arrows labeled 1) becomes 3 rules
in the inferred model (a move, a modification, and activation). The inferred model has
Abl1 (red border) as a requirement for Sos1 phosphorylation. There is a single datum
specifying this requirement; the STM curator did not consider one datum showing this
requirement as sufficient evidence. Future work includes associating rules with some
measure of quantity/quality of evidence, in order to able to assemble models using
different criteria for inclusion of rules.
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The STM rule 529 for Hras activation (GTP association, arrows labeled 2) includes
a requirement for [Shp2 - Yphos] and a requirement for Pi3k (red borders), while
the inferred rule does not. These requirements come from extras such as inhibited
by: xPik3r?(mnr)"DN"... and inhibited by: xShp2(mnr)"CIA" that require
substantial background knowledge to interpret. For example, CIA stands for ‘Con-
stitutively InActive’. The inference is that if the endogenous protein is overwhelmed
by a mutated form that is lacking some function, then that protein (with that function)
is required. Future versions of the assertion generation tool will capture more of these
inferences.

6 Related Work and Conclusion
Related work. An excellent survey of executable models of biological processes is
given in [8]. There are a number of network reconstruction algorithms based on statis-
tical reasoning techniques such as Bayesian inference [10] or belief propagation [16].
They provide a means of elucidating the networks underlying transcriptomics and pro-
teomics data generated from perturbation experiments. These methods postulate causal
relations, but do not capture mechanistic details such as necessary conditions.

Methods more closely related to our approach include the following. Net-synthesis
[1,2] is a software for synthesis, inference and simplification of signal transduction net-
works. The main idea is representing observed indirect causal relationships as network
paths, introducing pseudo-vertices for unknown intermediaries of these paths and using
techniques from combinatorial optimization to find the most parsimonious graph con-
sistent with all experimental observations. A method based on Petri nets is described
in [4]. The reactions of individual proteins are represented as Petri net modules, stored
in a database. These modules are similar in spirit to datums. Each place in a module
corresponds to a specific functional state of a specific protein domain (e.g. a phospho-
rylated or unphosphorylated side chain, a catalytically active or inactive domain etc.).
For each module, literature references are annotated as part of the modules database
entry. Selected modules can be combined to assemble executable Petri net models.
The method has been applied to assemble a model of JAK/STAT signaling. In [20],
two methods to build signaling models from qualitative data (protein interactions from
databases) are proposed, based on analyzing network connectivity and on non-linear
optimization. Methods to convert BioPAX models into fully executable models have
been proposed, including [5, 22]. The work presented here differs from these works in
starting from experimental evidence to build knowledge bases and executable models,
rather that relying on existing pathway databases.
Conclusion. We have presented an inference system for deriving signal transduction
rules from formally represented experimental findings and applied the system to derive
rules for a model of Hras activation4. Future work includes: extending the mapping of
datums to assertions to capture the meaning of experimental perturbations using mu-
tations and fragmentation, extracting formal background knowledge from databases,
extending the logic to cover more assays and capture more complex reasoning, such as
hypothesizing rule requirements and alternatives by similarity, adding logic to generate

4 The assertion mapping code and logic are currently being extended and improved. We are
happy to make the current working version available upon request.
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common rules (rules about protein interactions independent of stimulus), and automat-
ing assembly of models from generated rules.
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