
Pathway Logic

Carolyn Talcott?

SRI International
333 Ravenswood Avenue, Menlo Park, CA 94025, USA

clt@csl.sri.com

Abstract. Pathway Logic (PL) is an approach to modeling and analysis of bio-
logical processes based on rewriting logic. This tutorial describes the use of PL
to model signal transduction processes. It begins with a general discussion of
Symbolic Systems Biology, followed by some background on rewriting logic and
signal transduction. The representation and analysis of a small model of Ras and
Raf activation is presented in some detail. This is followed by discussion of a
curated model of early signaling events in response to Epidermal Growth Factor
stimulation.

Key words: Symbolic systems biology, rewriting logic, signal transduction, Path-
way Logic, Epidermal Growth Factor signaling

1 Symbolic Modeling of Cellular Processes

Biological processes are complex. They exhibit dynamics with a huge range of time
scales: microseconds to years. The spatial scales cover 12 orders of magnitude: metabo-
lite to single protein to cell to organ to whole organism. Just considering the cellular
level, cells interact with their environment, both sensing and affecting. They have many
behaviors: they can grow, proliferate, migrate, differentiate, or die. Underlying these
behaviors are a variety of processes such as gene regulation, signal transduction, and
metabolism that interact with one another in complex ways. Genes are regulated by pro-
teins (and other molecular entities) binding to promoter regions. This determines which
genes are expressed (turned on) and thus which new proteins are produced. These pro-
teins may in turn regulate the same or other genes. A cell senses its environment by re-
ceptors in the membrane that recognize specific types of molecules or conditions. This
results in signal transduction that transmits the information to appropriate components
inside the cell. Mechanisms underlying the flow of information include modification of
protein state, formation of complexes, and change of location. The flow is controlled
by mechanisms that activate or inactivate proteins in the signaling path. Metabolism
involves both synthesis and degradation of chemicals to generate energy, synthesize
protein building blocks (amino acids), and cell structure components amongst other
things. Metabolic processes are controlled by enzymes which may in turn be activated
or inhibited by signaling processes. Furthermore, metabolites such as glucose play a
role in controlling signal flow.
? This work was partially supported by NSF grant IIS-0513857. The development of Pathway

Logic was partially supported by grants from NIH NIGMS and NCI.

2 Carolyn Talcott

Oceans of experimental biological data are being generated, from both traditional
and emerging high throughput techniques. How can we use this data to develop better
models? Important intuitions are captured in mental models that biologists build of
biological processes and the cartoons they draw. The trouble is that these models are
not amenable to computational analysis.

High level statistical models can be developed, for example, to discover possible
correlations and causal relations. Such models may suggest useful insights, but have
many limitations such as features that can not be modeled. Low level, detailed kinetic
or stochastic models can be developed for small subsystems, but often require parameter
fitting, so that the reaction rates used reflect unknown biological context.

Symbolic systems biology is the qualitative and quantitative study of biological
processes as integrated systems rather than as isolated parts. Our focus is on model-
ing causal networks of biomolecular interactions in a logical framework at multiple
scales. The aim is to develop formal models that are as close as possible to domain
experts (biologists) mental models. Furthermore, it is important to be able to compute
with and analyze these complex networks. The latter includes techniques for abstracting
and refining the logical models; using simulation and deduction to compute or check
postulated properties; and make testable predictions about possible outcomes, using
experimental results to update the models.

There are many challenges in developing symbolic systems models. One challenge
is choosing the right abstractions. Biological networks (metabolic, protein, or regula-
tory, for example) are large and diverse. It is important to balance computational com-
plexity against model fidelity and to be able to move between models of different levels
of detail, using different formalisms in meaningful ways. Biological networks combine
to produce high levels of physiological organization, for example, circadian clock sub-
networks are integrated with metabolic, survival, and growth subnetworks. A second
challenge is to be able to compose different views or models of different components
into integrated system models.

Symbolic/logical models allow one to represent partial information and to model
and analyze systems at multiple levels of detail, depending on information available
and questions to be studied. Such models are based on formalisms that provide language
for representing system states and mechanisms of change such as reactions. These lan-
guages come with a well-defined semantics, and tools for analysis are based on this
underlying semantics. Of particular interest are symbolic models that are executable.
An executable model describes system states and provides rules specifying the ways in
which the state may change. Such models can be used for simulation of system behav-
ior. In addition, properties of processes can be stated in associated logical languages
and checked using tools for formal analysis.

Given an executable model, the path graph of a given initial state is a graph whose
nodes are the reachable states and whose edges are the rules connecting them. Paths
through the graph then correspond to possible ways a system can evolve. An execution
strategy picks out a particular path among those possible. For such a model, there are
many kinds of analysis that can be carried out, including: static analysis, forward simu-
lation, forward search, backward search, model checking, constraint solving, and meta
analysis.

Pathway Logic 3

Static analysis allows one to examine the structure of the model and to understand
how the elements are related and organized (the sort structure). It can be used to infer
flow of control and dependencies. Static analysis also provides a means to check for
inconsistencies or ill-formed declarations and to look for missing information.

Forward simulation runs the model from a given initial state using a specified strat-
egy either for a fixed number of steps, or until no more rewrites apply. This is extremely
fast, and very useful for initial exploration.

Forward search is a breadth-first search of all paths through the transition graph
for a given initial state. If the graph (number of states) is finite search will find all
possible outcomes from a given initial state. Assuming finite branching, search will
find all outcomes at a finite depth. Search can also be constrained to find only states
satisfying a given property.

Backward search runs the model backwards. For models satisfying certain con-
straints, backwards search can answer the question: “From what initial states can we
get to this state?”. For example it can be used to find all possible precursors to a partic-
ular checkpoint, or to prove that a bad state cannot be reached from an initial state.

Model checking expands the collection of properties that can be investigated. Search
concerns only properties of individual states. Model-checking tools are based on algo-
rithms to determine if all computations of a system (pathways / sequences of steps)
satisfy a given property. For example we can ask if molecule X is never produced be-
fore molecule Y has been produced. If not, a pathway that fails to satisfy the property
(molecule Y is produced and molecule X is produced before it) is returned. Turning
this around, to find a pathway satisfying a property of particular interest, one asserts
that no such pathway exists and a counterexample will be one of the desired pathways.
An example of another kind of property that can be model checked is: “If we reach a
state that satisfies P then do we always later reach a state satisfying Q?”

Constraint solving attempts to find values for a set of variables that satisfy a given
set of constraints. Maximal satisfiability (MaxSat) problems are a generalization of con-
straint satisfaction problems where there may be conflicting constraints, and hence no
assignment of values to variables that will satisfy them all. Weights (importance mea-
sures) are assigned to constraints and a MaxSat solver finds a solution maximizing the
total weight of the satisfied constraints. Many static analysis problems can be formu-
late as constraint systems. Steady state analyses such as determining possible flows of
information or chemicals through a system can be formulated as constraint problems.

Meta analysis allows us to reason about the models themselves. Essential features
of models can be abstracted to form families of related models, allowing us to work
with uncertainty about reactions. Starting with a base set of known reactions, differ-
ent instantiations of sets of reactions can be explored. For example, we can search for
models where a given path property is true in a given initial state. In addition, rules
themselves can be abstracted into families of rules, each family corresponding, for ex-
ample, to a particular type of reaction, such as activation, inhibition, or translocation.
It also allows the knowledge base to be queried as data base, for example finding all
rules that involve a given protein (in any or a specified state or location). Finally, using
mappings of logics a model can be mapped to another formalism to take advantage of
additional tools.

4 Carolyn Talcott

2 A Sampling of Symbolic Modeling Approaches

A variety of formalisms initially developed to model and analyze concurrent computer
systems have been used to develop symbolic models of biological systems, including:
Petri nets [38, 48]; the pi-calculus [34, 35] and its stochastic variants [40]; membrane
calculi [43, 36, 28]; statecharts [20, 10], life sequence charts [24]; rule-based systems
including Rewriting Logic [33, 7] and P-systems [37]; and hybrid systems [21]. For
a recent review of ‘executable specification approaches’ see [15]. A series of abstract
machines each suited to modeling biological process associated to a different class of
macromolecules is presented in [4] giving an nice introduction to the concepts to be
modeled.

There are many variants of the Petri net formalism and a variety of languages and
tools for specification and analysis of systems using Petri nets. Petri nets model net-
works of reactions that describe processes as well as process execution. Petri nets have
a graphical representation that corresponds naturally to conventional representations of
biochemical networks. They have been used to model metabolic pathways and simple
genetic networks (e.g., see [22, 42, 19, 26, 32, 16]). In [29] timed Petri nets are used to
model cellular signaling. These studies have been largely concerned with dynamic or
kinetic models of biochemistry. In [55] a more abstract and qualitative view is taken,
mapping biochemical concepts such as stoichiometry, flux modes, and conservation
relations to well-known Petri net theory concepts. Overviews of different Petri net for-
malisms and their application to modeling biological processes can be found in [18,
6].

In contrast to Petri nets in which system state is explicit and processes emerge from
rules/transistions that change the state, process calculi model molecular components as
as processes. State is implicit in the interactions that processes may participate in. A pi-
calculus model for the receptor tyrosine kinase/mitogen-activated protein kinase (RTK/-
MAPK) signal transduction pathway is presented in [44]. BioSPI, a tool implementing
a stochastic variant of the pi-calculus, has been used to simulate both the time course
and probability of biochemical reactions [40].

BioAmbients [43], an adaptation of the Ambients formalism for mobile computa-
tions has been developed to model dynamics of biological compartments. BioAmbient
type models can be simulated using an extension of the BioSPI tool. A technique for
analysis of control and information flow in programs has been applied to analysis of
BioAmbient models [36]. This can be used, for example, to show that according to the
model a given protein could never appear in a given compartment, or a given complex
could never form.

Statecharts naturally express compartmentalization and hierarchical processes as
well as flow of control among subprocesses. They have been used to model T-cell ac-
tivation [23, 10]. Life Sequence Charts [8] are an extension of the Message Sequence
Charts modeling notation for system design. This approach has been used to model the
process of cell fate acquisition during C.elegans vulval development [24].

Like Petri nets, rule-based formalisms model the state of molecular components
directly, and state change is specified by rules. As will be described in the following
sections, Pathway Logic [11, 12, 49, 51] represents biological processes using theories
in rewriting logic. System state is represented as an algebraic term, and behavior is

Pathway Logic 5

specified by rewrite rules. Models can be directly analyzed by execution, search, and
model-checking, or by mapping to other formalisms, such as Petri Nets. P-systems is
a multiset rewriting formalism that provides a built in notion of location. A continuous
variant of P-systems is used in [41] to model intra-cellular signaling. The model can
be used to predict concentration of components, for example phosphorylated Erk, over
time by a discrete step approximation method. A simple formalism for representing
interaction networks using an algebraic rule-based approach very similar to the Path-
way Logic approach is presented in [14, 5]. The language has three interpretations: a
qualitative binary interpretation much like the Pathway Logic models; a quantitative
interpretation in which concentrations and reaction rates are used; and a stochastic in-
terpretation. Queries are expressed in a formal logic called Computation Tree Logic
(CTL) and its extensions to model time and quantities. CTL queries can express reach-
ability (find pathways having desired properties), stability, and periodicity. Techniques
for learning new rules to achieve a desired system specification are described in [3].

Hybrid systems techniques are important for modeling processes where one wants
to capture both continuous and discrete aspects. Models of glucose/insulin metabolism
and B. subtilis sporulation are described in [30]. Hybrid system abstraction methods
(see [53]) are used to analyze the model, for example to develop parameters for insulin
control in diabetic patients. In [17] hybrid system models of the delta-notch system in
Drysophila are studied using control theory and hybrid abstraction methods.

Symbolic executable models can be mapped to alternative logical formalisms for
analysis. As will be discussed later, certain rewriting logic models can be mapped to
Petri Nets for analysis by special purpose, efficient model checkers. In [2] a continu-
ous stochastic logic and the probabilistic symbolic model checker, PRISM, is used to
express and check a variety of temporal queries for both transient behaviors and steady
state behaviors. Proteins modeled as synchronous concurrent processes, and concentra-
tions are modeled by discrete, abstract quantities. Metabolic or signaling networks can
be analyzed using a constraint-based technique that generalizes the well-known flux
balance analysis [9] by representing the network as constraints on the reactions, rather
than on the reacting components. In [54] this technique is used to compute preferred
steady states under different conditions, also represented as constraints. Apart from un-
derstanding the steady-state configurations, constraint-based analysis can also be used
to identify modules in the network, trace the flow of information in the network, and
identify cross talk and conflicts.

3 Pathway Logic Overview

Pathway Logic (PL) [11, 12, 49, 52, 50, 51] is a symbolic systems biology approach to
the modeling and analysis of molecular and cellular processes based on rewriting logic
[33]. Such formal theories can include both specific facts and general principles relat-
ing and categorizing data elements and processes. New data structures for representing
biological entities and their relations and properties can easily be defined. Theories
concerning different types of information can also be combined using well-understood
operations for combining logical theories. A wide range of analytical tools developed

6 Carolyn Talcott

for the analysis of computer system specifications is being adapted to carry out new
kinds of analysis of experimental data curated into formal theories.

In PL, biological molecules, their states, locations, and their roles in molecular or
cellular processes can be modeled at very different levels of abstraction. For example,
a complex signaling protein can be modeled either according to an overall state, its
post-translational modifications, or as a collection of protein functional domains and
their internal or external interactions. Similarly biological processes can be represented
at different levels of granularity using rewrite rules. Each rule represents a step (at the
chosen level of granularity) in a biological process such as metabolism or intra-/inter-
cellular signaling. A rule may represent a family of reactions using variables to stand for
families of molecular components. Rules express dependencies on biological context;
for example, a scaffold needed to hold proteins in position to interact productively.

A collection of rules together with the underlying data type specifications forms a
PL knowledge base. Each biological molecule that is declared in a PL rewrite theory
has associated metadata linking it to standard database entries, for example HUGO
or UniProt/Swiss-Prot for proteins, along with other information such as category and
synonyms. This information is part of the knowledge base. It is important to place the
knowledge in a broader context and to be able to integrate it with other knowledge
sources. Each rule has associated evidence used to justify the rule, which is also part of
the knowledge base.

A PL model consists of a specification of an initial state (cell components and loca-
tions) interpreted in the context of a knowledge base. Such models are executable and
can be understood as specifying possible ways a system can evolve. Logical inference
and analysis techniques are used for simulation to study possible ways a system could
evolve, to assemble pathways as answers to queries, and to reason about dynamic as-
sembly of complexes, cascading transmission of signals, feedback-loops, cross talk be-
tween subsystems, and larger pathways. Logical and computational reflection are used
to transform and further analyze models.

Pathways are not predefined. Instead they are assembled by applying the rules start-
ing from an initial state, searching for a state meeting given conditions. For example, a
pathway leading to specific conditions, such as activation of a Ras protein can be gen-
erated as the result of a logical query. A subnet (subset of reactions) composed of all
possible relevant pathways can also be generated. A subnet consisting of connections to
a given set of molecular components can be generated by graph exploration techniques.

PL knowledge is represented and analyzed using Maude [7], a rewriting-logic-based
formalism. The Pathway Logic Assistant (PLA) [52] provides an interactive visual rep-
resentation of PL models. In PLA, models are represented as graphs with nodes for
rules and components, and edges connecting reactant components to rules and rules
to product components (formally these graphs are Petri Nets). These models can be
queried and in silico experiments can be performed to study the effects of perturbations
on these networks. Using PLA a biologist can:

– ask for a list of dishes available for study, and modify or create dishes;
– display the network of signaling reactions for a specified model;

Pathway Logic 7

– formulate and submit queries to find pathways, for example, activating one protein
without activating a second protein, or exhibiting a phenotype signature such as
apoptosis;

– compare two pathways;
– find knockouts—proteins whose omission prevents reaching a specified state;
– incrementally explore network connections to given rules or components;
– visualize gene expression data in the context of a network (by coloring the coded

proteins according to expression level)

PLA, sample models, tutorial material, papers and presentations are available from
the Pathway Logic web site, http://pl.csl.sri.com/.

4 Introduction to Formal Executable Specification and Maude

As mentioned in Section 3, Pathway Logic models of biological processes are devel-
oped using the Maude system, a formal language and tool set based on rewriting logic.
Rewriting logic [33] is a logical formalism that is based on two simple ideas: states of
a system are represented as elements of an algebraic data type, specified in an equa-
tional theory, and the behavior of a system is given by local transitions between states
described by rewrite rules. An equational theory specifies a data type by declaring con-
stants and constructor operations that build complex structured data from simpler parts.
Functions on the specified data types are defined by equations that allow one to compute
the result of applying the function. A term is a variable, a constant, or application of a
constructor or function symbol to a list of terms. A specific data element is represented
by a term containing no variables. Assuming the equations fully define the function
symbols, each data element has a canonical representation as a term containing only
constants and constructors. The canonical representation is obtained by using the equa-
tions to rewrite a data term until only constants and constructor symbols remain. For
example the natural numbers are constructed from the constant 0 by application of the
successor function s(0), s(s(0)) . . . (usually written as 1, 2, . . .). The plus function, +,
can be defined by two equations: n + 0 = n and n + s(m) = s(n) + m), where n
and m are variables standing for arbitrary numbers. Using these equations we can com-
pute the canonical form (value) of s(s(0)) + s(s(s(0))) (2 + 3). An equation is applied
to a term by matching the left hand side of the equation to a subterm and replacing
that subterm the the corresponding righthand side of the equation. The second equation
matches s(s(0)) + s(s(s(0))) with n := s(s(0)) and m := s(s(0)) and the result of
rewriting with this equation is s(s(s(0))) + s(s(0)). Using the second equation twice
more we get s(s(s(s(0)))) + s(0) and then s(s(s(s(s(0))))) + 0. Now we apply the
first equation to obtain s(s(s(s(s(0))))) (i.e. 5).

One data type might be a subtype (subsort / subset) of another. For example the
non-zero numbers are a subset of all numbers. Elements of one data type might consist
of lists or multisets of elements from another type. For example a system might be
represented by a set of pairs such as {(A,2) (B,5) (C,0)}.

A rewrite rule has the form t ⇒ t′ if c where t and t′ are patterns (terms possibly
containing place holder variables) and c is a condition (a boolean term). Such a rule
applies to a system in state s if t can be matched to a part of s by supplying the right

8 Carolyn Talcott

values for the place holders, and if the condition c holds when supplied with those
values. In this case the rule can be applied by replacing the part of s matching t by
t′ using the matching values for the place holders in t′. The process of application of
rewrite rules generates computations (also thought of as deductions). In the case of
biological processes these computations correspond to pathways. Note that rewriting
with rules is similar to rewriting with equations, in that we match the lefthand side and
replace the matched subterm by the instantiated righthand side. The difference is in the
way the rewriting is used. Equations are used to define functions by providing a means
of compution the value of a function application. This means that the equations of an
equational theory should give the same result independent of the order in which they
are applied. Furthermore, equational rewriting should terminate. In contrast, rules are
used to describe change over time, rather than computing the value of a function. They
often describe non-deterministic possibly infinite behavior.

To summarize, a rewriting logic specification naturally has two parts: an equational
part that specifies data types and functions on these types, and a rules part, specifying
how systems may evolve. To query the specification, one may further specify one or
more terms representing systems (initial states) of interest, to be analyzed using formal
tools such as execution, search and model checking.

Maude is a language and tool based on rewriting logic http://maude.cs.
uiuc.edu. Maude provides a high performance rewriting engine featuring match-
ing modulo associativity, commutativity, and identity axioms; and search and model-
checking capabilities. Thus, given a specification S of a concurrent system, one can
execute S to find one possible behavior; use search to see if a state meeting a given
condition can be reached; or model-check S to see if a temporal property is satisfied,
and if not to see a computation that is a counter example.

In the following we use a simple example to introduce Maude notation and give
some intuition about how to represent and analyze the structure and behavior of con-
current systems using Maude. We call the example Magic Marbles. In the world of
magic marbles, a marble can be plain or have some magical potential: positive, nega-
tive, or (positive or negative) activator. A positive (resp. negative) activator marble can
give positive (resp. negative) potential to a plain marble. When it does so, it changes
parity and becomes a negative (resp. positive) activator. If a marble with negative po-
tential contacts a marble with positive potential the potential is cancelled and they both
become plain. A marbles world consists of a collection (formally a multiset) of marbles
interacting according to the laws described above.

We formalize the marbles world in Maude by defining three modules. The mod-
ules MAGIC-MARBLES-DATA and MAGIC-MARBLES-STATE specify data types repre-
senting marbles and marbles world states. The module MAGIC-MARBLES-RULES spec-
ifies the rules governing magic marble behavior. The modules MAGIC-MARBLES-DATA
and MAGIC-MARBLES-STATE are functional modules specifying an equational the-
ory. They form the equational part of the marbles world specification. The module
MAGIC-MARBLES-RULES is a system module forming the rules part.

A Maude module begins with the keyword fmod (a functional module, specifying
one or more data types) or mod (a system module, with rules specifying system behav-

Pathway Logic 9

ior), followed by the module name, and ends with a corresponding keyword endfm, or
endm, respectively.

The module MAGIC-MARBLES-DATA begins by declaring a sort Marble, the data
type consisting of all marbles, and a subsort (think subset or subtype) PlainMarble,
plain marbles. This is followed by an ops declaration naming several specific plain
marbles, for example a red marble redM. Next a sort MagicMarble of marbles with
magical potential is declared. It is also a subsort of Marble. Magic potential is repre-
sented abstractly by a sort Potential. Four different potentials are defined (the second
ops declaration):

– +, - represent positive and negative potentials
– *, @ represent the potential of an activator marble to generate a positive or negative

potential respectively.

A marble with potential p is constructed by annotating a plain marble m with p, written
[m | p].

fmod MAGIC-MARBLES-DATA is
sort Marble .
sort PlainMarble . subsort PlainMarble < Marble .
ops redM blueM greenM purpleM whiteM blackM

: -> PlainMarble [ctor] .

sort MagicMarble . subsort MagicMarble < Marble .

sort Potential .
ops + - * @ : -> Potential [ctor] .
op ‘[_|_‘] : PlainMarble Potential -> MagicMarble [ctor] .

endfm

The declaration beginning op ‘[_|_‘] is an example of mixfix syntax, where an op-
erator is collection of symbols including _s that are place holders for the arguments.
In this case there are two arguments, the first of sort PlainMarble, the second of sort
Potential. (The backquotes are to ensure the brackets are parsed as part of the oper-
ator symbol.)

As examples, we have

– [whiteM | *] a white marble with positive activator potential
– [whiteM | @] a white marble with negative activator potential
– [greenM | +] a green marble with positive potential

The module MAGIC-MARBLES-STATE extends MAGIC-MARBLES-DATA (using the
inclusion statement beginning inc) specifying a sort Mix of multisets of marbles. (A
multiset or bag is a collection of elements where the number of occurrences of an given
element matters, but the order does not.) The constant none represents the empty mul-
tiset, and multiset union is represented by a binary operator, _ _, that is associative and
commutative with identity none (ACI).

10 Carolyn Talcott

fmod MAGIC-MARBLES-STATE is
inc MAGIC-MARBLES-DATA .

sort Mix .
subsort Marble < Mix .
op none : -> Mix [ctor] .
op _ _ : Mix Mix -> Mix [assoc comm id: none] .
endfm

Thus redM blueM [whiteM | *] is a mix of three marbles, two plain and one with
positive activating potential.

The syntax, _ _, is an example of empty syntax, a special case of mixfix syntax
in which application of the operator is juxtaposition. The attribute [assoc comm id:

none] at the end of the declaration specifies the ACI property, which axiomatizes the
notion of multiset. Associative means that the two ways of joining three elements with
two applications of the operator give the same multiset. For example,

((redM blueM whiteM) = (redM (blueM whiteM)) .

This means that parentheses can be omitted, grouping of arguments doesn’t matter.
Commutative means that permuting the order of arguments gives the same result.

For example,

redM blueM = blueM redM .

The “identity none” property means that adding none to the mix does not change the
mix. For example,

redM blueM none = blueM redM .

The module MAGIC-MARBLES-RULES specifies how marbles interact using three rules.
A rule begins with the key word rl followed by the rule label enclosed in []s. The
lefthand side (premiss) and righthand side (conclusion) of a rule are separated by the =>
sign. The rules labeled plus and minus formalize the informal statements “A positive
(resp. negative) activator marble can give positive (resp. negative) potential to a plain
marble.” “a marble with the * potential is a positive activator”, and “a marble with the @
potential is a negative activator.” The rule labeled cancel formalizes the statement “If
a marble with negative potential contacts a marble with positive potential the potential
is cancelled and they both become plain”.

mod MAGIC-MARBLES-RULES is
inc MAGIC-MARBLES-STATE .
vars pm0 pm1 : PlainMarble .
rl[plus]: pm0 [pm1 | *] => [pm0 | +] [pm1 | @] .
rl[minus]: pm0 [pm1 | @] => [pm0 | -] [pm1 | *] .
rl[cancel]: [pm0 | +] [pm1 | -] => pm0 pm1 .

endm

The variables pm0, pm1 stand for arbitrary plain marbles. The change of activator po-
tential in rules plus,minus formalize “When it does so, it changes parity and becomes
a negative (resp. positive) activator.”

Pathway Logic 11

Now we have an executable formal specification of magical marbles. What can we
do with it? The simplest thing to do is to pick a starting state and use the rewrite and
continue commands to watch it run. The command rew [1] t . rewrites the term t

one step. The command cont 1 . continues rewriting one more step. Suppose we have
an initial state [whiteM | *] redM blueM with two plain marbles and a positive
activator. The rule plus applies to the subterm [whiteM | *] redM matching pm0 to
redM and pm1 to whiteM (using multiset matching where the order of multiset elements
doesn’t matter), and replacing the matched subterm by the corresponding instance of the
rule’s righthand side, [redM | +] [whiteM | @].

Maude> rew [1] [whiteM | *] redM blueM .
result Mix: blueM [redM | +] [whiteM | @]

Rewriting can be continued by rewriting with the minus rule and then by the cancel
rule.

Maude> cont 1 .
result Mix: [redM | +] [blueM | -] [whiteM | *] *** by [minus]
Maude> cont 1 .
result Mix: redM blueM [whiteM | *] *** by [cancel]

This computation could be continued as many steps as you like. There are many other
possible computations starting from our initial state, each making different choices of
which plain marble to use in the plus step.

The command search [n] istate =>+ pattern searches the states reach-
able from istate for states matching pattern, stopping when it has found n solutions,
or it runs out of states. It starts by finding all states that result from application of one
rewrite rule, the finding all states that result from application of one rewrite rule to each
of these states, and so on. Using the search command we can ask whether it is possible
to make the red and blue marbles simultaneously positive, starting from the our initial
state.

Maude> search [1] [whiteM | *] redM blueM
=>+ M:Mix [redM | +] [blueM | +] .

Maude> no Solution .

The answer is no. If we add another positive activator then getting two positive marbles
is easy.

We can make the structure of magic marble states a little more interesting by in-
troducing boxes that can contain marbles, or other boxes, and such that under certain
conditions a marble can enter or leave a box. Specifically, only plain marbles can enter
or leave a box. For a marble to enter a box, the box must contain a negative activator,
while for a marble to leave a box, there must be a positive activator outside the box.

The module BOXED-MARBLES-DATA extends MAGIC-MARBLES-STATE with new
sorts BoxId (box identifier) and Box. The subsort declaration Box < Mix says that
boxes can appear in mixes. A box has an identifier and contains a mix. For example
{B0 | redM blueM} is a box with identifier B0 and contents redM blueM. For con-
venience we define a constant bMix to be a box with identifier B0 that contains a white

12 Carolyn Talcott

positive activator marble, and two nested boxes. This is done by an equating bMix to
a term representing the described box. In Maude an equation is introduced with the
keyword eq, followed lefthand and righthand side terms separated by the equality sign
=.

fmod BOXED-MARBLES-DATA is
inc MAGIC-MARBLES-STATE .
sorts Box BoxId .
subsort Box < Mix .
ops B0 B1 B2 : -> BoxId .
op ‘{_|_‘} : BoxId Mix -> Box [ctor] .

**** sample box mix
op bMix : -> Mix .
eq bMix = { B0 | [whiteM | *]

{B1 | redM blueM [blackM | @]}
{B2 | greenM purpleM [blackM | @]}} .

endfm

The module BOXED-MARBLES-RULES gives the rules for moving marbles in and out of
boxes.

mod BOXED-MARBLES-RULES is
inc BOXED-MARBLES-DATA .
inc MAGIC-MARBLES-RULES .

vars pm0 pm1 : PlainMarble .
var mx : Mix .
var bid : BoxId .

rl[in]:
{ bid | mx [pm0 | @] } pm1 => { bid | mx [pm0 | @] pm1 } .
rl[out]:
{ bid | mx pm1 } [pm0 | *] => { bid | mx } [pm0 | *] pm1 .

endm

To reason about location of marbles we define a predicate inBoxwhich, given a mix and
a box identifier, checks whether a box with that identifier contains the given mix. The
term contains(mx,mx0) evaluates to true if every element of mx0 is in mx. For ex-
ample inBox(bMix,B1,redM) = true and inBox(bMix,B0,whiteM) = false.
The function contains is defined by two equations.

var mx mx0 mx1 : Mix .
op contains : Mix Mix -> Bool .
eq contains(mx0 mx1, mx0) = true .
eq contains(mx,mx0) = false [owise] .

The first equation uses multiset matching to identify the true case. The pattern mx0 mx1

matches a mix term mx just if mx contains mx0 (mx1 is the rest of the mix). In this case
contains(mx,mx0) will rewrite to true. An equation, such as the second equation

Pathway Logic 13

above, tagged with the [owise] attribute, can only be used if no other equation applies.
In our case the second equation applies to a term contains(mx,mx0) just if mx does
not contain mx0. In this case the term rewrites to false.

The equations for inBox describe the following algorithm: select a box in the outer
mix; if the box has the given identifier, then check whether the box contains the target
mix, otherwise look for nested boxes and look in the rest of the outer mix. Again the
[owise] tagged equation is used for cases in which inBox can not be true, such as
when the mix is empty or contains no boxes.

op inBox : Mix BoxId Mix -> Bool .
var mx mx0 mx’ : Mix .
var bid bid’ : BoxId .
eq inBox({bid’ | mx} mx’, bid,mx0) =

(if bid == bid’ and contains(mx,mx0)
then true
else (if inBox(mx’,bid,mx0)

then true
else inBox(mx,bid,mx0)
fi) fi) .

eq inBox(mx,bid,mx0) = false [owise] .

Suppose we want to know if, in bMix, the marbles in boxes B1 and B2 can change
places. This can be answered by searching, using the inBox predicate. There is only
one solution, shown below.

Maude> search [1] bMix =>+ M:Mix such that
inBox(M:Mix,B1,greenM purpleM) and inBox(M:Mix,B2,redM blueM) .

Maude> Solution 1 (state 1387)
M:Mix --> {B0 | [whiteM | *]

{B1 | greenM purpleM [blackM | @]}
{B2 | redM blueM [blackM | @]}}

An alternative to search is to use model checking. A model checker checks proper-
ties of the possible computations starting from a given initial state. The properties are
expressed in Linear Temporal Logic (LTL). The module MARBLES-MC defines model
checking states for Magic Marbles and defines a state proposition based on the inBox
predicate. The {_} operator encapsulates a mix, thus defining a boundary. Proposi-
tions are defined using the relation, {mx}|= prop, read the mix mx satisfies the propo-
sition prop. A predicate on mixes (and other arguments) can easily be turned into
a proposition, by defining a corresponding operator that maps the remaining argu-
ments to the sort Prop. For example, inBoxP(bid,mx0) is the proposition corre-
sponding the predicate inBox(mx,bid,mx0) and {mx} satisfies inBoxP(bid,mx0)
if inBox(mx,bid,mx0).

mod MARBLES-MC is
inc BOXED-MARBLES-RULES .
inc MODEL-CHECKER .

14 Carolyn Talcott

op ‘{_‘} : Mix -> State .
op inBoxP : BoxId Mix -> Prop .

vars mx mx0 : Mix .
var bid : BoxId .
eq {mx} |= inBoxP(bid,mx0) = inBox(mx,bid,mx0) == true .

endm

If P is a state proposition, then the property []P says that every state in a compu-
tation satisfies P and []˜P says that no state in a computation satisfies P. Thus to see
if a state satisfying P can be reached, we can use the Maude model checker to evaluate
modelCheck({mx},[]˜P). If a state can be reached satisfying P, the model checker
will return a counter-example showing the transitions (state and rule label) of a compu-
tation containing such a state. For example, we can find a way to move redM from box
B1 to B2 as follows.

red modelCheck({bMix}, []˜inBoxP(B2,redM)) .
result ModelCheckResult: counterexample(
{{{B0 | [whiteM | *]

{B1 | redM blueM [blackM | @]}
{B2 | greenM purpleM [blackM | @]}}},

’out}
{{{B0 | redM [whiteM | *]

{B1 | blueM [blackM | @]}
{B2 | greenM purpleM [blackM | @]}}},

’in}
{{{B0 | [whiteM | *]

{B1 | blueM [blackM | @]}
{B2 | redM greenM purpleM [blackM | @]}}},

...}

...

The first transition applies the out rule to move redM out of box B1. The second tran-
sition applies the in rule to move redM into box B2. The ...s indicate that the counter
example continues. This is an artifact of the model checker requirement that counter
examples are infinite. The remainder of the computation is building a loop and can be
ignored for our purposes. The above is a reachability question that can also be answered
by search, although it is harder to extract the computation, it can be done.

5 Signal Transduction: What to Model

We will focus on modeling signal transduction networks. The Wikipedia article on sig-
nal transduction http://en.wikipedia.org/wiki/Signal transduction
contains an excellent overview and is a good place to start reading to learn more [?].

To illustrate key signaling concepts and modeling ideas, we will use epidermal
growth factor receptor (EgfR) signaling, which regulates growth, survival, prolifera-
tion, and differentiation in mammalian cells. In particular we will look at the MAPK

Pathway Logic 15

Fig. 1. Cartoon of Egf stimulated MAPK Pathway.

(Mitogen-Activated Protein Kinase) pathway [46, 13, 27, 25]. Figure 1 shows the car-
toon drawing of the MAPK pathway (taken from Wikipedia). The pathway is also often
represented as a linear sequence of events:

Egf→ EgfR→ Grb2→ Sos1→ Ras→ Raf1→Mek→ Erk

Here is a biologist style explanation of what this picture or sequence represents.
The explanation uses PL terminology, with corresponding names from the figure in
parentheses.

“In this canonical pathway, Egf (EGF) binds to the Egf receptor (EgfR) and stimu-
lates its protein tyrosine kinase activity to cause auto-phosphorylation, thus activating
EgfR. Next, the adaptor protein Grb2 (GRB2) and the guanine nucleotide exchange fac-
tor Sos1 (SOS) are recruited to the membrane and bind to the activated EgfR. The Sos1-
containing EgfR complex activates a Ras family GTPase, and the activated Ras protein

16 Carolyn Talcott

activates Raf1, a member of the RAF serine/threonine protein kinase family. Raf1 then
activates the protein kinase Mek1/2 (MEK), which then activate Erk1/2 (MAPK).”

Even without understanding the terminology, it should be clear that much of the
actual model remains in the mind of the biologist and is not captured by the picture. In
the remainder of this section we will look at the steps leading to activation of Ras in
some detail, to explain the terms used in the biologists style description of the pathway,
and introduce the concepts and mechanisms that we want to model. A PL model of this
pathway is discussed in Section 6, and the full PL model of Egf stimulation is discussed
in Section 8.

One of the first things to notice is that a protein may have many names, depending
on who is talking about it. The simplest variation is capitalization. PL uses the con-
vention that the name of a protein is capitalized like a proper name, while in the figure
protein names are all-caps. The numbers in PL names make explicit the fact that there
are numbered variants of a protein, for example Sos1 (as opposed to Sos2) or Mek1/2
(meaning either Mek1 or Mek2). The figure uses a more abstract representation. The
figure uses MAPK, which abbreviates Mitogen-Activated Protein Kinase, rather than
Erk (or Erk1/2). Sometimes a protein name is an acronym of a name that is related to
the proteins function or how it was discovered. For example, Egf abbreviates “Epider-
mal Growth Factor”, indicating that it is a protein involved in signaling related to deci-
sions about growth. EgfR (Epidermal growth factor receptor) is also known as ErbB1 or
HerbB1. Grb2, abbreviates “Growth factor receptor-bound protein 2” and Sos1 abbre-
viates “Son of sevenless 1” (first discovered in Drysophila and named for its connection
to the tyrosine kinase receptor “sevenless”.)

One way to determine if two names refer to the same protein is to link the name
to a database entry that is accepted as a standard (of course there are several stan-
dards). PL links all protein names to their Swiss-Prot entry. Swiss-Prot is a manually
curated biological database of protein sequences. In addition to the protein sequence,
the Swiss-Prot entry for a protein includes synonyms, literature references, informa-
tion about function, location, interactions, links to databases containing special purpose
information such a protein functional domains and gene annotations. For example the
Swiss-Prot name for EgfR is EGFR_HUMAN and the Swiss-Prot entry for EgfR can be
found at http://www.expasy.ch/cgi-bin/niceprot.pl?P00533 where
P00533 is the EgfR Swiss-Prot accession number. Non-protein signaling molecules,
such as sugars or lipids, also have many names. To reduce ambiguity, PL names of this
molecules are linked to entries in standard data bases such as KEGG where chemical
structure and other information can be found.

Adaptor proteins play key roles in signaling pathways. They serve to hold inter-
acting proteins in spatial configurations that make interaction possible. In the case of
the adaptor Grb2, this is represented in the figure by nitches in the Grb2 icon so that it
brings EgfR and Sos1 together enabling Sos1 to carry out its function to activate Ras.

GTP (Guanosine triphosphate) is an important molecule in metabolism, protein
synthesis, and signal transduction. In our example, binding of GTP activates Ras, and
subsequent hydrolysis of the bound GTP to GDP and phosphate inactivates Ras, thus
acting as a kind of switch. The switch can be turned on by proteins, such as Sos1, known
as guanine nucleotide exchange factors (GEFs), and can be turned off by GTPase-

Pathway Logic 17

activating proteins (GAPs) that accelerate hydrolysis of GTP to GDP (guanosine diphos-
phate). GEFs act by binding Ras-GDP forcing it to release the bound GDP. Once re-
leased from the GEF, Ras quickly binds fresh GTP from the cytosol. Ras is called a
GTPase because of its ability to bind and hydrolize GTP.

The notion of location plays an important role in cellular signaling. Proteins need to
be co-located to interact. Compartments in a cell serve to collect interacting groups of
proteins (and other molecular components). Each compartment has a membrane and an
interior and compartments may be nested. A cell is itself a compartment. Its membrane
is called the cell membrane and its interior is called the cytoplasm. In the cytoplasm
there are many other compartments, most importantly, the nucleus, where the cell’s
DNA resides. In the figure 1 we can trace the Egf signal from the outside of the cell,
through the cell membrane, traversing the cytoplasm and eventually reaching the nu-
cleus. In the process Grb2 and Sos1 are recruited from the cytoplasm to the interior of
the membrane, to bind to the inner part of EgfR.

Proteins and other molecules are categorized according to their function. A receptor
is a protein that receives a signal by recognizing and binding to a signaling molecule
called a ligand. This results in a complex in which the two proteins are linked together,
likely causing a change in shape and activity of the receptor thus initiating a signaling
process. The first step of our example pathway is activation of EgfR. The EgfR protein
is a receptor that has three regions: one that sticks outside the cell, one traversing the
cell membrane, and one that sticks into the cytoplasm. Thus, it receives signals from
outside the cell and transmits them to the inside. In our example, the ligand Egf binds
to external portion of Egf and then the Egf-EgfR complex dimerizes (pairs with another
Egf-EgfR complex).

A signal is propagated by changes in the state of involved proteins. One way to
change state is complexing with other proteins. Another important form of state change
is post-translational modification. This is a change in the chemical structure of a protein
after its translation. Phosphorylation, attaching a phosphate group to one of the amino
acid sites of a protein, is an example of post-translational modification. A kinase is a
protein that facilitates phosporylation. Usually kinases have specific proteins or classes
of proteins as targets and act on specific amino acid sites. Dually a phosphatase facili-
tates removal of a phosphate group. Phosphorylation (de-phosphorylation) changes the
state of a protein, and is one of the ways that signals get propagated (or blocked). In our
example, EgfR is not only a receptor, it is a kinase and capable of phosphorylating other
EgfRs. When the Egf-EgfR homo-dimer forms EgfR auto-phosphorylates and becomes
active.

Now we can explain the phrase “mitogen-activated protein kinase” (MAPK) path-
way. A mitogen is a molecule that signals a cell to trigger mitosis and thus commence
cell division. A MAPK pathway activates MAPK proteins such as Erk, which propa-
gate the mitotic signal to the nucleus. We note that Mek is a kinase kinase, (also called
MAPKK or MAPK Kinase), as it phosphorylates the kinase Erk. Continuing the trend,
Raf1 is a kinase kinase kinase also called MAPKKK.

18 Carolyn Talcott

6 Building a Pathway Logic Knowledge Base

Now we describe a small PL knowledge base, SmallKB, that represents initial signaling
events in response to Epidermal Growth Factor (Egf) stimulation discussed in Section
5. The full Egf stimulation model is discussed in Section 8.

Recall that a rewriting logic specification has two parts: an equational part spec-
ify structure and static properties of system states, and a rules part specifying system
behaviors. A PL Model system is structured in four layers: (1) sorts and operations,
(2) molecular components, (3) rules, and (4) queries. Layers 1-3 make up a Pathway
knowledge base (PL KB) with layers 1 and 2 being the equational part.

6.1 The Equational Part

The sorts and operations layer declares the main sorts, subsort relations, and opera-
tors to construct representations of cellular states. The sorts of entities include Chemi-
cal, Protein, Complex, and Location (position within cellular compartments), and Cell.
These are all subsorts of the sort, Soup, that represents ‘liquid’ mixtures, as multisets of
entities. The sort Modification is used to represent post-translational protein modifica-
tions. They can be abstract, to specify that a protein is activated, bound, or phosphory-
lated, or more specific, for example, phosphorylation at a particular site. Modifications
are applied using the operator [_-_]. (Note the similarity to the annotation of marbles
with potential in section 4.) For example, the term [Raf1 - act] represents Raf1

in an activated state, and [Hras - GTP] represents the protein Hras in its “on” state
(loaded with GTP). (Hras is a specific member of the Ras family.) The term [Gab1

- Yphos] represents Gab1 phosphorylated on a tyrosine site while [Gab1 - phos(Y

627)] represents Gab1 phosphorylated on tyrosine 627. Complex formation is repre-
sented by the operation (_:_). For example, the term (Egf : [EgfR - act]) rep-
resents the complex resulting from binding of Egf to EgfR and subsequent activation of
EgfR. A cell state is represented by a term of the form

[cellType | locs] .

The symbol cellType specifies the type of cell, for example Macrophage or Fibroblast.
The symbol Cell is used to indicate an unspecified cell type. The symbol locs repre-
sents the contents of a cell organized by cellular location. Each location is represented
by a term of the form { locName | components } where locName identifies the
location, for example CLm for cell membrane, and components stands for the mixture
of proteins and other compounds in that location. For example,

[Cell | {CLm | EgfR PIP2}
{CLi | [Hras - GDP] Src}
{CLc | Gab1 Grb2 Pi3k Plcg Sos1}]) .

represents a generic cell with three locations: the membrane (location tag CLm) contains
EgfR and a chemical PIP2 (see below); the inside of the membrane (location tag CLi)
contains Hras loaded with GDP and Src; and the cytoplasm (location tag CLc) contains
Gab1, Grb2, Pi3k, Plcg, and Sos1.

Pathway Logic 19

The components layer specifies particular entities (proteins, genes, chemicals) and
introduces additional sorts for grouping proteins in families. For example ErbB1L is
a subsort of Protein whose elements are ErbB1 (EgfR) ligands. Components are de-
clared as constants, giving their sort, and metadata giving synonyms and standard names
that can be linked to databases providing other information. For example the epidermal
growth factor Egf with sort ErbB1L, and metadata giving its HUGO and Swiss-Prot
names, its Swiss-Prot accession number, and its category. in addition to two synonyms.

op Egf : -> ErbB1L [metadata "(\
(spname EGF_HUMAN)\
(spnumber P01133)\
(hugosym EGF)\
(category Ligand)\
(synonyms \"Pro-epidermal growth factor precursor, EGF\" \

\"Contains: Epidermal growth factor, Urogastrone \"))"] .

Similarly, EgfR is declared simply to be a protein.

op EgfR : -> Protein [metadata "(\
(spname EGFR_HUMAN)\
(spnumber P00533)\
(hugosym EGFR)\
(category Receptor)\
(synonyms \"Epidermal growth factor receptor precursor\" \

\"Receptor tyrosine-protein kinase ErbB-1, ERBB1 \"))"] .

PIP2 is a chemical (a lipid) residing in the membrane. Its phosphorylated form, PIP3,
plays an important role in a number of signaling pathways, either directly or through its
cleavage products. Chemicals have metadata linking them to a KEGG database entry,
where much information can be found.

op PIP2 : -> Chemical [metadata "(\
(category Chemical)\
(keggcpd C04569)\
(synonyms \"Phosphatidylinositol-4,5P \"))"] .

The rules layer is the heart of a PL KB. It contains rewrite rules specifying indi-
vidual reaction steps. In the case of signal transduction rules represent processes such
as activation, phosphorylation, complex formation, or translocation. The rules layer is
discussed in Section 6.2 below.

The queries layer specifies initial states (called dishes) to be studied. Initial states
can be thought of as describing “in silico experiments”. They represent in silico Petri
dishes containing a cell and ligands of interest in the supernatant. An initial state is
represented by a term of the form

PD(out cell)

20 Carolyn Talcott

where cell represents a cell state and out represents a soup of ligands and other molec-
ular components in the cells surroundings. In fact a dish can contain many cells, how-
ever the current PL analysis tools only treat single cells. For example an initial state to
study Ras activation in SmallKB is given by the dish term

op rasDish : -> Dish .
eq rasDish =

PD(Egf [Cell | {CLm | EgfR PIP2}
{CLi | [Hras - GDP] Src}
{CLc | Gab1 Grb2 Pi3k Plcg Sos1}]) .

representing a dish containing Egf and the cell discussed above.

6.2 The Rules Part

PL rules are curated from the literature, and each rule has associated evidence items de-
scribing experimental data that serve as evidence for the rule. Discussion of evidence is
beyond the scope of the present document, as it requires some understanding of exper-
imental methods to be meaningful. The rules for the initial response to Egf signaling
closely parallel the biologist’s informal explanation of Figure 1 given in Section 5.

rl[1.EgfR.act]:
?ErbB1L:ErbB1L
[?CellType:CellType | ct {CLm | clm EgfR}]
=>
[?CellType:CellType | ct
{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L)}] .

Rule 1 (label 1.EgfR.act) describes the binding of an ErbB1 ligand to EgfR. The term
?ErbB1L:ErbB1L is a variable that matches any ErbB1 ligand, for example Egf, and
?CellType:CellType is a variable that matches any cell type. {CLm | clm EgfR}

matches any cell membrane location that contains EgfR, since clm is a variable that
will match the rest of the membrane contents. Thus the left hand side subterm

[?CellType:CellType | ct {CLm | clm EgfR}]

matches any cell that contains EgfR in the cell membrane, since the variable ct will
match any additional locations. For example, it matches the initial state rasDish with

?CellType:CellType := Cell
?ErbB1L:ErbB1L := Egf
clm := PIP2
ct := {CLi | [Hras - GDP] Src} {CLc | Gab1 Grb2 Pi3k Plcg Sos1}

and the result of rewriting rasDish with rule 1 is

PD([Cell |
{CLm | ([EgfR - act] : Egf) PIP2}
{CLi | [Hras - GDP] Src}
{CLc | Gab1 Grb2 Pi3k Plcg Sos1}]) .

Pathway Logic 21

which is obtained by instantiating the rules right hand side using the variable bindings
from the left hand side match.

Once the receptor is activated it can recruit Grb2 to the membrane interior. This is
describe by the rule labeled 5.Grb2.reloc.

rl[5.Grb2.reloc]:
{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }
{CLi | cli }
{CLc | clc Grb2 }
=>
{CLm | clm ([EgfR - act] : ?ErbB1L:ErbB1L) }
{CLi | cli [Grb2 - reloc] }
{CLc | clc } .

Notice that on the left, Grb2 is in the CLc location (cytoplasm) while on the right it is
in CLi location. The modification reloc makes the change in location explicit. It is not
strictly necessary, but makes the changes easier to follow. Continuing the rewriting of
rasDish with rule 5.Grb2.reloc we get

PD([Cell |
{CLm | ([EgfR - act] : Egf) PIP2}
{CLi | [Hras - GDP] Src [Grb2 - reloc]}
{CLc | Gab1 Pi3k Plcg Sos1}]) .

Now Sos1 can be recruited to the membrane complex by binding to Grb2. This is
described by rule 13.Sos1.reloc. Note that in this particular representation the com-
plex formation is abstracted to colocation. We could also make the complex explicit if
it were needed for some analysis.

rl[13.Sos1.reloc]:
{CLi | cli [Grb2 - reloc] }
{CLc | clc Sos1 }
=>
{CLi | cli [Grb2 - reloc] [Sos1 - reloc] }
{CLc | clc } .

The resulting state is

PD([Cell |
{CLm | ([EgfR - act] : Egf) PIP2}
{CLi | [Hras - GDP] Src [Grb2 - reloc] [Sos1 - reloc]}
{CLc | Gab1 Pi3k Plcg }]) .

In the next section we will see how to transform the Maude terms in to a graph rep-
resentation that makes it easier to visualize and understand reaction networks and their
evolution. In particular, a graphical representation of the above three step computation
is shown below in Figure 3.

22 Carolyn Talcott

7 Computing with a PL KB

The Pathway Logic Assistant (PLA) provides interactive graphical access to a PL knowl-
edge base. For this purpose, rule sets and computations are represented using Petri nets
[39, 38, 48], which have a natural graphical representation, additionally, there are very
efficient tools for analyzing the Petri net models generated by PLA. (See Section 2 for
discussion of other uses of Petri nets in systems biology.)

7.1 PL Petri nets

Petri Nets were invented to model execution of concurrent processes and thus are nicely
suited to modeling signals propagating through a cell. A Pathway Logic Petri net (sim-
ply called Petri net, in what follows) can be thought of as graph with two kinds of
nodes: rule nodes (shown as squares) and occurrence nodes (shown as ovals). Rule
nodes, called transitions in the Petri net community, represent reactions, and occur-
rence nodes, called places in the Petri net community, represent reactants, products, or
modifiers. Occurrences can be thought of as atomic propositions asserting that a protein
(in a given state) or other component (small molecule, complex, . . .) occurs in a given
compartment. In this view, rules are logical implications.

An occurrence oval is labeled by a string representation of the corresponding Maude
term. For example the string representation of Efg outside a cell is Egf-Out and
Egf:EgfR-act-CLm is the string representation of Egf : [EgfR - act] in the cell
membrane. The reactants of a rule are the occurrences connected to the rule by arrows
from the occurrence to the rule. The products of a rule are the occurrences connected
to the rule by arrows from the rule to the occurrence. The modifiers of a rule (enzymes
and other components that must be present but are unchanged) are the occurrences con-
nected to the rule by a dashed arrow. For example, the Petri net representation of the
rule for recruitment of Sos1 is shown in Figure 2.

13

Sos1-reloc-CLi

Sos1-CLc Grb2-reloc-CLi

Fig. 2. Petri net transitions for rule 13.Sos1.reloc

The rule is represented by the rectangle labeled 13 (short form of 13.Sos1.reloc).
The reactant Sos1 in the cytoplasm is represented by the oval labeled Sos1-CLc with
an arrow from the oval to the rule rectangle. The product [Sos1 - reloc] at the mem-
brane interior is represented by the oval labeled Sos1-reloc-CLi with an arrow from

Pathway Logic 23

the rule rectangle to the oval. [Grb2-reloc] drives the reaction but is not changed (at
our level of representation), thus it is represented by the oval labeled Grb2-reloc-CLi
with a dashed arrow from the oval to the rule rectangle.

A set of Petri net rules corresponding to the rules of a PL knowledge base is called
a transistion knowledge base (TKB). The analog of a PL dish is a PL Petri net state,
which specifies which occurrences are present, that is, it specifies the state and location
of each molecular component. Given a state, a Petri net rule is enabled if all of its
occurrences connected by incoming arrows (reactants and modifiers) are present in the
state. When an enabled rule fires, the reactant occurrences are removed from the state
and the product occurrences are added. The modifier occurrences are left unchanged.

Corresponding to a PL model, a Petri net model consists of a set of rules (a TKB)
and an initial state. To execute a Petri net model one puts tokens on the ovals corre-
sponding to occurrences present in the initial state, and moves tokens as rules become
enabled and fired. Figure 3 shows the execution of a Petri net model of the process that
recruits Sos1 to the membrane interior.

13

Sos1-reloc-CLi

Sos1-CLc

EgfR-CLm

1

5

Grb2-reloc-CLi

Egf:EgfR-act-CLm Grb2-CLc

Egf-Out

(a) initial state

13

Sos1-reloc-CLi

Sos1-CLc

EgfR-CLm

1

5

Grb2-reloc-CLi

Egf:EgfR-act-CLm Grb2-CLc

Egf-Out

(b) step 1

13

Sos1-reloc-CLi

Sos1-CLc

EgfR-CLm

1

5

Grb2-reloc-CLi

Egf:EgfR-act-CLm Grb2-CLc

Egf-Out

(c) step 2

13

Sos1-reloc-CLi

Sos1-CLc

EgfR-CLm

1

5

Grb2-reloc-CLi

Egf:EgfR-act-CLm Grb2-CLc

Egf-Out

(d) step 3

Fig. 3. Execution of the Sos1 recruitment pathway

There are three rules (corresponding to the rewrite rules discussed in Section 6). Darker
ovals represent occurrences that are present (marked with a token). Figure 3(a) shows
the initial state with Egf-Out, EgfR-CLm, Grb2-CLc, and Sos1-CLc marked as ini-
tially present. The only rule enabled is rule 1. Figure 3(b) shows the result of fir-
ing rule 1, removing tokens from Egf-Out and EgfR-CLm and adding a token to
Egf:EgfR-act-CLm. Now rule 5 is enabled and Figure 3(c) shows the result of fir-
ing rule 5. This enables rule 13 and Figure 3(d) shows the final state.

Starting with a PL KB, we convert it to a Petri net TKB, and convert dishes to
occurrence sets, in a way that preserves the possible executions. We can then analyze
models by finding subnets relevant to a desired state (goal), finding pathways reaching a
goal, comparing subnets and/or pathways, finding knockouts (omissions from the initial
state that prevent reaching a goal), or exploring a network of rules by incrementally
adding connected components and rules to a given starting subnet. This is explained

24 Carolyn Talcott

in more detail in the following subsections. Details, including proof that the Petri net
representation is equivalent to the rewriting logic representation, can be found in [52].

7.2 Converting a PL KB to a Petri net TKB

Transformation to Petri net representation accomplishes several things. One is support
for graphical representation. Another is making things concrete. The full PL represen-
tation allows for rules that express families of reactions and for multiple cells and cell
types. In PLA we restrict attention to systems with a single cell and for each variable
that stands for a single component, we fix a specific (finite) set of components that can
be values of that variable. For example, in the SmallKB knowledge base, there are two
proteins that can be values of the variable ?ErbB1L:ErbB1L of sort ErbB1L, namely
Egf and Tgfa. Producing a Petri net representation of the Pathway Logic knowledge
base proceeds in two steps. The first step transforms rules to occurrence form, by trans-
forming the dishes or cells appearing in PL rules into occurrence sets. The second step
instantiates remaining variables with known values.

Formally, an occurrence is a pair consisting of a component (a protein, possibly
modified, a small molecule, or a complex) and a location name. For example, <Egf,
Out> is an occurrence representing Efg outside a cell and < Egf : [EgfR - act],

CLm> is a occurrence representing Egfr complexed with Egf and activated in the cell
membrane. The left or right side of a rule is transformed by pairing each component
with its location (the name of the enclosing location), dropping the location container,
and dropping variables such as ct or clm that serve only to name location contents that
are not important for the rule. Thus rule 1 (1.EgfR.act) becomes

rl[1.EgfR.act.pn]
< ?ErbB1L:ErbB1L, Out > < EgfR , CLm >
=>
< ?ErbB1L:ErbB1L : [EgfR - act], CLm >

When we instantiate remaining variables, we also convert rules (logical statements)
into elements of a data type called PNetTransition. This allows us to compute with
and reason about the Petri net rules directly. An interpreter to execute rules represented
as data can be defined by a single rewrite rule. A pnet transition term has the form

pnTrans(label,iOccs,oOccs,bOccs)

where label is a quoted identifier, and iOccs, oOccs bOccs are multisets of occur-
rences: iOccs are the occurrences required and removed by the transition (connected
to the rule by incoming arrows), oOccs are the occurrences produced by the transition
(connected to the rule by outgoing arrows), and bOccs are the occurrences required but
not removed by the transition (connected to the rule by dashed arrows). As an example,
two pnet transitions are obtained by instantiating the occurrence form of rule 1, the first
by instantiating the variable ?ErbB1L:ErbB1L with Egf

pnTrans(’1.EgfR.act,
< Egf,Out > < EgfR,CLm >,
< Egf :[EgfR - act],CLm >,
none)

Pathway Logic 25

and the second by instantiating with Tgfa.

pnTrans(’1.EgfR.act#1,
< EgfR,CLm > < Tgfa,Out >,
< Tgfa :[EgfR - act],CLm >,
none)

The transition label is the rule label, suffixed with #1, #2, . . . if there are multiple in-
stantiations. Since in rule 1 there are no unchanged occurrences, iOccs is simply the
instantiated occurrences from the rule lefthand side, oOccs is the instantiated occur-
rences from the rule righthand side, and bOccs is none, the empty occurrence set.

As another example, the Sos1 recruitment rule (13.Sos1.reloc) is transformed
into the following pnet transition.

pnTrans(’13.Sos1.reloc,
< Sos1,CLc >,
<[Sos1 - reloc],CLi >,
<[Grb2 - reloc],CLi >)

In this case bOccs is <[Grb2 - reloc],CLi > which is necessary for the rule to fire,
but not used up.

The process of converting a rule set into a list of pnet transitions uses Maude’s meta-
level, where rules are represented as data and one can manipulate terms with variables
(which are also just data in the meta-level).

7.3 PL PNet models

Once we have a TKB we can derive models and compute with them, asking for subnets,
pathways, knockouts, and making comparisons. A model consists of a pnet transition
list (specifying the possible transitions) and a set of occurrences representing the initial
(or current) state. It is derived from a dish and a TKB by transforming the dish into a
set of occurrences and doing a forward collection in the TKB from the occurrence set
to derive the set of transitions that could possibly be enabled in a computation starting
from the initial state. The idea of the forward collection is to iteratively augment the
occurrence set with all occurrences that could be produced by firing enabled transitions
(from TKB), without removing the iOccs part of the transition, and then add enabled
transitions to the accumulating list of transitions.

To give a flavor of the functions underlying PLA, we describe the forward col-
lection process in a little more detail. The reader should feel free to skip to the next
paragraph if this seems like too much detail. The collection process operates on a tuple
(tkb,occs,pntl,pending,more?) where tkb is list of possible transistions, occs,
is the accumulated occurrence set, pntl is the accumulated transition list. pending is
list of tkb elements that are not yet enabled in occs, and more? is a boolean which
remembers if any new occs have been added to the accumulated set. Initially the triple
is (TKB,dOccs,nil,nil,false) where dOccs is the dish occurrence set, and nil

is the empty list. In one pass, each collection step transforms the tuple by removing a
transition from tkb and adding it to pntl if the transition is enabled in occs. Other-
wise it is added to pending. If there are any occurrences in the transition oOccs part

26 Carolyn Talcott

that are not in occs, they are added to occs and the done? becomes true. The pass
ends when there are no more transitions in tkb. If more? is true then a new pass is
started. Otherwise the accumulated pntl is returned. This can be expressed as a func-
tion fwdCollect defined by the following equations.

eq fwdCollect(tkb,dish)
= fwdCollect(tkb,dish2occs(dish),nil,nil,false) .

eq fwdCollect(pnTrans(rid,iOccs,oOccs,bOccs) tkb,
occs, pntl,pending,more?)

=
if contains(occs,union(iOccs,oOccs)) .
then fwdCollect(tkb, union(occs,oOccs),

(pntl, pnTrans(rid,iOccs,oOccs,bOccs)),pending,
(if (oOccs - occs == none) then more? else true fi)

else fwdCollect(tkb, occs, pntl,
(pending, pnTrans(rid,iOccs,oOccs,bOccs)),more?)

fi .
eq fwdCollect(nil,occs,pntl,pending,false) = pntl.
eq fwdCollect(nil,occs,pntl,pending,true) =

fwdCollect(pending,occs,pntl,nil,false) .

This forward collection produces a transition list that is possibly an over approximation.
That is, any transition of TKB that becomes enabled in some computation from the
initial state will be in the accumulated transition list but, there may be some transitions
that do not become enabled in any computation from the initial state. The crucial point
is that we don’t loose any possible computations by restricting the set of transitions to
be considered, and the simple over approximation makes the model derivation feasible.

Figure 4 shows a screen shot of the Petri net model of Raf activation, generated by
PLA from the dish rafDish whose occurrence set is rafDishOccs

eq rafDishOccs =
< Egf, Out > < EgfR, CLm > < PIP2, CLm >
< [Hras - GDP], CLi> < Src, CLi> < [Ube213 - ubiq], CLi >
< Cbl, CLc > < Gab1, CLc > < Grb2, CLc > < Pi3k, CLc >
< Plcg, CLc > < Sos1, CLc > < 1433x1, CLc > < Pak1, CLc >
< Raf1, CLc > < PP2a, CLc > .

As discussed above, ovals are occurrences, with initial occurrences darker. Rectangles
are transitions. Dashed arrows indicate an occurrence that is both input and output. The
thumbnail sketch in the upper right shows the full network. The main frame shows
a magnified version of the portion of the network in the red rectangle. The view in
the main frame can be changed by dragging the red rectangle around in the thumbnail
frame. It can also be changed using the scroll bars. The Finder in the lower right allows
one to locate occurrences and rules by name, and center the view on the selected node.

PLA provids a simple query language for specifying signaling pathways of interest.
A query specifies three sets: goals, avoids, and hides. Goals are a set of occurrences that
should appear at the end of a pathway, as they represent properties of a desired state.
Avoids are a set of occurrences that should not appear in any state in the execution of
the pathway. Hides are a set of rules that should not fire in the pathway. To make a

Pathway Logic 27

Fig. 4. Raf Activation Model viewed in PLA.

query, goals, avoids, and hides sets can be selected by clicking the occurrence or rule to
select, and pressing the corresponding button in the information window that appears.
Once query elements have been selected, the user can ask to see the relevant subnet
or to find a path. The relevant subnet contains all of rules needed for any (minimal)
pathway satisfying the query, while the path is just the first path found by the analysis
tool. The relevant subnet is computed directly from the pnet transitions list, together
with the initial state and query elements in a manner similar to the forward collection
function above.

The logic underlying the query language is a temporal logic Goal queries are an-
swered by model-checking the assertion that the goal set is not reachable, from the
initial state ioccs in a transition list pntl* from which transitions that produce an
avoid or are in the hides set are removed.

(pntl*,ioccs) |= []˜ goal

A pathway satisfying a query is obtained by translating the reduced pnet transition list
and query into the language of the LoLA model checker [45, 31], asserting that no such
pathway exists. If a pathway does exist LoLA returns a list of transitions in the pathway,
which PLA converts to a Petri net for display and possibly further analysis. The LoLA

28 Carolyn Talcott

model checker is highly optimized for Petri nets, and thus allows use to compute with
very large models.

13

Sos1-reloc-CLi

Sos1-CLc

EgfR-CLm

1

5

Grb2-reloc-CLi

Egf:EgfR-act-CLm Grb2-CLc

Egf-Out

(a) Sos1 Path

Gab1-Yphos-CLi

8

Pi3k-act-CLi

EgfR-CLm

1

Egf:EgfR-act-CLm

5

4

Pi3k-CLc

Egf-Out

Grb2-reloc-CLi Gab1-CLc

Grb2-CLc

(b) Pi3k Path

Gab1-Yphos-CLi

8

Pi3k-act-CLi

Sos1-CLc

13

EgfR-CLm

1

Egf:EgfR-act-CLm

5

4

Pi3k-CLc Sos1-reloc-CLi

Egf-Out

Grb2-reloc-CLi Gab1-CLc

Grb2-CLc

(c) Comparison

Fig. 5. Sos1 and Pi3k activation paths and comparison

Figure 5 shows pathways in the Raf1 model that recruit Sos1 (a), and activate Pi3k

(b), obtained by making Sos1-reloc-CLi or Pi3k-act-CLi a goal (indicated by
coloring the oval green) and using FindPath. The key property of a pathway is that
executing the pathway Petri net starting from the initial state leads to a state in which
the goal(s) are among the occurrences, that is, a state satisfying the goal is reached.
Furthermore, none of the avoids or hides appear in the pathway.

In addition to generating pathway subnetworks, two subnets can be compared. For
this, the two networks are merged into one. Figure 5(c) shows the result of comparing
the Sos1 and Pi3k pathways. Nodes in both pathways are colored pink, nodes only in
the Sos1 pathway are colored cyan, and nodes only in the Pi3k pathway are colored
dark lavendar.
The Sos1 and Pi3k pathways are part of the model of Hras activation, and ultimately
of Raf activation. Figure 6(a) shows a pathway activating Hras, obtained by specifying
Hras-GTP-CLi as a goal. Figure 6(b) shows the Sos1 and Pi3k comparison as a subnet
of the Hras activation pathway (nodes only in the Hras path are white).

In principle is it possible to formulate more complex queries, for example express-
ing that a particular element is a check-point, or that a particular activation state is
always eventually reachable. In [1] a study was carried out in which Pathway Logic
models were exported to the SAL language [47] and comparison of the effectiveness
of several model-checkers in answering temporal logic queries was made. For the large
models that we are interested in querying, bounded model checking was able to find
counter-examples and thus to generate pathways for goals/avoids queries, but none of

Pathway Logic 29

Gab1-Yphos-CLi

8

Pi3k-act-CLi

EgfR-CLm

1

Sos1-CLc

13

Egf:EgfR-act-CLm

5

4

PIP3-CLm

6

Pi3k-CLc

Sos1-reloc-CLi

Hras-GTP-CLi

Egf-Out

9

Hras-GDP-CLi

Grb2-reloc-CLi Gab1-CLc

PIP2-CLm

Grb2-CLc

(a) rasPath

Gab1-Yphos-CLi

8

Pi3k-act-CLi

Sos1-CLc

13

EgfR-CLm

1

Egf:EgfR-act-CLm

5

4

PIP3-CLm

6

Pi3k-CLc

Sos1-reloc-CLi

Hras-GTP-CLi

Egf-Out

9

Hras-GDP-CLi

Grb2-reloc-CLi Gab1-CLc

PIP2-CLm

Grb2-CLc

(b) Sos1 and Pi3k SubPaths

Fig. 6. Ras activation pathway and Sos1,Pi3k subnets

the general model checkers was able to check more complex formulas on large models.
The special purpose Petri net analysis seems to scale much better, and the goals/avoids
queries are easy for the biologists to understand.

The SmallKB and the Ras and Raf1 activation initial states are available as part of
the Pathway Logic Demo available from the Pathway Logic web site http://pl.
csl.sri.com/ along with papers, tutorial material and download of the Pathway
Logic Assistant tool.

8 PL Model of Egf Stimulation

As an example of a non-trivial signaling model, we describe a Pathway Logic model
that includes all known early responses to Epidermal growth factor (Egf) stimulation.
As mentioned in Section 5 Epidermal growth factor receptor (EgfR) signaling regulates
growth, survival, proliferation, and differentiation in mammalian cells.
Figure 7 show a cartoon version of molecular components and interactions involved
in EfgR signaling. Although the cartoon summarizes a lot of information, the repre-
sentation is not suited for computational analysis. The PL model of Egf stimulation is

30 Carolyn Talcott

mTOR

Akt

GSK

PKC

PLC

Src

c-Cbl

Dok

GAB2

SHP2

Crk

Paxillin

Calcineurin

Yes

Syk

Muc1

Caveolin

β-catenin

Spry
Jak

E-cadherin

FAK

p130 Cas

Vav1

Nck1

PAK1

MEKK1

JNK

rac1

c-Abl

Calmodulin

CaMK

Grb2

SOS

Raf

MEK

MAPK

p70S6K

Stat

FoxO1

Bad

Ras

CREB Elk Stat

Shc

PI3K

E
G

F
R

/E
rb

B
1

E
G

F
R

/E
rb

B
1

H
E

R
3/E

rb
B

3
H

E
R

2/E
rb

B
2

H
E

R
4/E

rb
B

4

H
E

R
2/E

rb
B

2

H
E

R
4/E

rb
B

4

E
G

F
R

/E
rb

B
-1

Stat

H
E

R
2/E

rb
B

2

CXCR4

WT1

Gab1

Shc

BDP1

Memo

H
E

R
4/E

rb
B

4

NMDAR

PSD95

H
E

R
4/IC

D Stat

γ secretase

H
E

R
2/IC

D

importin β1

Nup358

EGF EGF
βCEL.NRG1

NRG2

NRG3

NRG4 NRG4

HB-EGF TGFα
Epigen/EPG

AR

Protein
Synthesis

Cell
Survival

Cell
Cycle

Cytoskeletal
Regulation

Cell Motility

Invasion
Metastasis

Proliferation
Apoptosis

Cell
Migration

Neuronal
Migration
Synapse
Plasiticity

Nuclear
Translocation

Direct Stimulatory Modification Kinase

Phosphatase

Transcription Factor

Transcriptional Stimulation

Transcriptional Inhibition

Translocation

Separation of Subunits or Cleavage Products

Joining of Subunits

Direct Inhibitory Modification

Multistep Stimulatory Modification

Multistep Inhibitory Modification

Tentative Stimulatory Modification

Tentative Inhibitory Modification

KEY

HER/ErbB Signaling Network

www.cellsignal.com

© 2004 - 2007 Cell Signaling Technology, Inc. ErbB_HER.eps • created October 2004 • revised January 2007

Fig. 7. Cartoon drawing of Egf signaling

based on a PL knowledge base of early response events in adherent cells expressing
Egf receptors. Rules in the knowledge base are based on experimental results and data
curated from the published scientific literature. The first step in the construction of the
knowledge base was to collect the data: 174 papers were searched for appropriate ex-
periments and the results were listed as 1373 evidence items that contain information
about state changes. The evidence items are used to determine the components of a
reaction rule. The reaction network assembled from data supporting events that might
be downstream of EgfR signaling includes over 370 reactions involving more than 460
occurrences (signaling molecules in different states and locations). These rules were
combined with a collection of Common Rules curated from additional experimental
data from experiments not specific to Egf stimulation.
As explained in Section 6, given a knowledge base, a model is obtained by defining
an initial state—the cellular components (proteins, chemicals, or nucleic acids), their
modifications, and locations. For the Egf model, the initial state represents a serum
starved, adherent cell expressing EgfR and was curated from published experimental
data. An impression of the Pathway Logic Assistant (PLA) rendering of the model as
a Petri net is shown in Figure 8 (a). Clearly this is a complex model. PLA can be used
to browse the model and to ask for subnets or pathways satisfying goals of interest.
For example, the subnet of all reactions relevant to activation of Erk in response to a
stimulus by Egf is obtained by making Erk1 (and/or Erk2) a goal and asking PLA for
the subnet. This is shown in Figure 8 (b).

Pathway Logic 31

(a) Egf stimulation net (b) Erk activation subnet

Fig. 8. Model of Egf stimulation.

Unfortunately, there are so many potential paths to Erk activation that the Petri net is
still too complicated to comprehend without visualization tools or additional simplify-
ing constraints. The result of asking PLA to find a pathway activating Erk is shown in
Figure 9 (a). This pathway is similar to the canonical pathway that extends our Raf ac-
tivation pathway of Section 7. But, the subnet for Erk activation contains many possible
paths that activate Erk. Which is the “correct” path? Currently there is no tool that will
produce all paths for individual inspection and further analysis.

Our approach is to use additional biological knowledge to further constrain the net-
work. A list of 85 state changes demonstrated experimentally to occur in response to a
short stimulus with Egf was collected as part of the curation process. These occurrences
(protein states) were set as goals. This ensured that the paths used to reach specific cho-
sen goals are consistent with other observed events. In addition, Egf specific rules were
given precedence over Common Rules abstracting these rules. The Egf specific rules
that contain requirements specific to Egf signaling that must be satisfied before they
can fire. This ensures that any pathways found will include events that must happen
before Erk is activated. Figure 10 shows the pathway satisfying all of the additional
constraints. The existence of the constrained network containing all 85 events observed
in response to Egf stimulation is a form of model validation (or more accurately failure
of invalidation). Figure 9 (b) shows the path to Erk activation within the constrained
network. This is also a pathway in the full network, but it differs from that found by
searching in the unconstrained network, as we have forced the model-checking tool to
work in the context of realizing all the other observed events. We see that it is a great
deal more complicated than the canonical pathway. This result is not surprising, given
the large number of molecular components involved in the collected evidence items.

The constrained path from Egf to Erk contains many unfamiliar events in com-
parison to the canonical pathway. For example, Rala is required for Src activation in
response to Egf, but Sos1 is not required for Hras activation in response to Egf. More
generally, models based on a knowledge base such as the curated PL knowledge base
demonstrate that the series of events between activation of EgfR by Egf and activation
of Erk and other goals may not be as simple as those described in canonical pathways.

32 Carolyn Talcott

643

PIP3-CLm

14

Erk2-act-CLi Erk1-act-CLi

111-1

Prkcz-act-CLi

Sos1-reloc-CLi

999

Hras-GTP-CLi

775325

1092

(Grb2:Sos1)-CLc(Egf:EgfR-act)-CLm

E74-2

Pi3k-act-CLi Braf-act-CLi

452

108

Pdpk1-act-CLi

EgfR-CLm

1-2

Pdpk1-CLc

Sos1-CLc Grb2-CLcEgf-Out

Grb2-reloc-CLi

PIP2-CLm Mek1-CLc

Pi3k-CLc

Erk1-CLc

Hras-GDP-CLi

Braf-CLc

Prkcz-CLc

Mek1-act-CLi

Erk2-CLc

(a) Pathway activating Erk

E49

Tnk2-act-CLi

Ptk2b-act-CLi

E19

377

Pxn-Yphos-CLi

Rgl1-CLc

337

Src-CLi

E54

Hras-GTP-CLi

E04

Braf-act-CLi

E42

E32

Mek1-act-CLi

E60

736

RasGrf1-act-CLi

Src-act-CLi

E43

Rala-GTP-CLi

Braf-CLc

IqGap1-reloc-CLi

470

Mlk3-act-CLi

E39

Ptk6-act-CLi

E41

Mek1-CLc

Gab1-CLc

E21

Rala-GDP-CLi

E76

(Egf:EgfR-act)-CLm

Erk2-act-CLi

Raf1-act-CLi

Hras-GDP-CLi

E25

1165

(Sos1:Abi1:Eps8)-CLc

Tnk2-CLc

Raf1-CLc

Erk2-CLc

Ptpn11-Yphos-CLi

RasGrf1-CLc

Mlk3-CLc

Rgl1-reloc-CLi

Ptpn11-CLc

E62 E55

E75

(Abi1:Eps8)-CLc

Erk1-act-CLi

Rac1-GTP-CLi

Eps8-CLc

1159

EgfR-CLm

Pi3k-act-CLi

Sos1-CLc

Rac1-GDP-CLi

Egf-Out

Abi1-CLcPtk6-CLc

Pi3k-CLc

Erk1-CLc

Gab1-Yphos-CLi

Ptk2b-CLi

IqGap1-CLc

Pxn-CLc

(b) Erk activation constrained

Fig. 9. Pathways activating Erk.

9 Conclusion

Pathway Logic is a symbolic systems biology approach to modeling biological pro-
cesses based on rewriting logic. We have described the use of Pathway Logic to model
signal transduction processes, and the use of the Pathway Logic Assistant to browse and
analyse these models. Pathway logic can also be used to model and analyze metabolic
networks and to interpret experimental data. Future challenges include integration of
signaling and metabolic network models, and new abstractions to simplify networks
and identify meaningful modules.

Acknowledgements. The author would like to thank the SFM-Bio organizers for inviting
this tutorial paper; and the members of the Pathway Logic team for their contributions
to the development of modeling techniques and the analysis and visualization tools.
Particular thanks to Merrill Knapp, our curator-in-chief, for always being willing to
explain the biology, help with illustrations, and give constructive criticisms.

References

1. R. Apolzan. Rapid prototyping applications of formal reasoning tools to biological cellular
signalling networks, 2005. 〈http://mcs.une.edu.au/∼iop/Data/Papers/〉.

2. Muffy Calder, Vladislav Vyshemirsky, David Gilbert, and Richard Orton. Analysis of sig-
nalling pathways using the PRISM model checker. In G. Plotkin, editor, Proceedings of the
Third International Conference on Computational Methods in System Biology, 2005.

Pathway Logic 33

Fig. 10. Constrained model of Egf stimulation.

3. Laurence Calzone, Nathalie Chabrier-Rivier, Francois Fages, Lucie Gentils, and Sylvain
Soliman. Machine learning bio-molecular interactions from temporal logic properties. In
G. Plotkin, editor, Proceedings of the Third International Conference on Computational
Methods in System Biology, 2005.

4. Luca Cardelli. Abstract machines of systems biology. In Transactions on Computational
Systems Biology III, volume 3737 of LNCS, pages 145–168. 2005.

5. N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schächter. Modeling and
querying biomolecular interaction networks. Theoretical Computer Science, 351(1):24–44,
2004.

6. C. Chaouiya. Petri net modelling of biological networks. Briefings in Bioinformatics, 8:210–
219, 2007.

7. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart´-Oliet, José
Meseguer, and Carolyn Talcott. All About Maude: A High-Performance Logical Framework.
Springer, 2007.

8. W. Damm and D. Harel. Breathing life into message sequence charts. Formal Methods in
System Design, 19(1), 2001.

9. J. S. Edwards, M. Covert, and B. O. Palsson. Metabolic modelling of microbes: The flux-
balance approach. Environmental Microbiology, 4(3):133–140, 2002.

10. S. Efroni, D. Harel, and I.R. Cohen. Towards rigorous comprehension of biological complex-
ity: Modeling, execution and visualization of thymic t-cell maturation. Genome Research,
2003. Special issue on Systems Biology, in press.

11. Steven Eker, Merrill Knapp, Keith Laderoute, Patrick Lincoln, José Meseguer, and Kemal
Sonmez. Pathway Logic: Symbolic analysis of biological signaling. In Proceedings of the
Pacific Symposium on Biocomputing, pages 400–412, January 2002.

12. Steven Eker, Merrill Knapp, Keith Laderoute, Patrick Lincoln, and Carolyn Talcott. Path-
way Logic: Executable models of biological networks. In Fourth International Workshop on
Rewriting Logic and Its Applications, volume 71 of Electronic Notes in Theoretical Com-
puter Science. Elsevier, 2002.

13. G. Pearson et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physio-
logical functions. Endocr. Rev., pages 153–183, 2001.

14. F. Fages, S. Soliman, and N. Chabrier-Rivier. Modelling and querying interaction networks
in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chem-
istry, 4(2):64–73, 2004.

34 Carolyn Talcott

15. Jasmin Fisher and Thomas A. Henzinger. Executable cell biology. Nature Biotechnology,
25(11), 2007.

16. H. Genrich, R. Küffner, and K. Voss. Executable Petri net models for the analysis of
metabolic pathways. Software Tools for Technology Transfer, 3, 2001.

17. R. Ghosh, A. Tiwari, and C. Tomlin. Automated symbolic reachability analysis with applica-
tion to delta-notch signaling automata. In O. Maler and A. Pnueli, editors, Hybrid Systems:
Computation and Control HSCC, volume 2623 of LNCS, pages 233–248. Springer, April
2003.

18. David Gilbert, Monika Heiner, and Sebastian Lehrack. A unifying framework for mod-
elling and analysing biochemical pathways using petri nets. In Muffy Calder and Stephen
Gilmore, editors, CMSB, volume 4695 of Lecture Notes in Computer Science, pages 200–
216. Springer, 2007.

19. P. J. Goss and J. Peccoud. Quantitative modeling of stochastic systems in molecular biology
using stochastic Petri nets. Proceedings of the National Academy of Science, 95:6750–6755,
1998.

20. D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Pro-
gramming, 8:231–274, 1987.

21. T.A. Henzinger. The theory of hybrid automata. In 11th IEEE Symposium on Logic in
Computer Science, pages 278–292, 1996.

22. R Hofestädt. A Petri net application to model metabolic processes. Systems Analysis Mod-
elling Simulation, 16:113–122, 1994.

23. N. Kam, I.R. Cohen, and D. Harel. The immune system as a reactive system: Modeling t
cell activation with statecharts. In Visual Languages and Formal Methods (VLFM’01), pages
15–22, 2001.

24. N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, J. Hubbard, and M. Stern. Formal mod-
eling of C.elegans development: A scenario-based approach. In First International Workshop
on Computational Methods in Systems Biology, volume 2602 of Lecture Notes in Computer
Science, pages 4–20. Springer, 2003.

25. W. Kolch. Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by
protein interactions. Biochem J., 351:289–305, 2000.

26. R. Küffner, R. Zimmer, and T. Lengauer. Pathway analysis in metabolic databases via dif-
ferential metabolic display (DMD). Bioinformatics, 16:825–836, 2000.

27. J. M. Kyriakis and J. Avruch. Mammalian mitogen-activated protein kinase signal transduc-
tion pathways activated by stress and inflammation. Physiol. Rev., 81:807–869, 2001.

28. L.Cardelli. Brane calculi interactions of biological membranes. In Computational Methods
in Systems Biology, volume 3082 of LNCS. Springer, 2004.

29. C. Li, Q. W. Ge, M. Nakata, H. Matsuno, and S. Miyano. Modelling and simulation of signal
transductions in an apoptosis pathway by using timed petri nets. Journal of Bioscience,
32:113–127, 2007.

30. P. Lincoln and A. Tiwari. Symbolic systems biology: Hybrid modeling and analysis of
biological networks. In R. Alur and G. Pappas, editors, Hybrid Systems: Computation and
Control HSCC, volume 2993 of LNCS, pages 660–672. Springer, March 2004.

31. LoLA: Low Level Petri net Analyzer, 2004. http://www.informatik.hu-berlin.
de/∼kschmidt/lola.html.

32. H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano. Hybrid Petri net representation of gene
regulatory network. In Pacific Symposium on Biocomputing, volume 5, pages 341–352, 2000.

33. J. Meseguer. Conditional Rewriting Logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

34. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
35. R Milner. Communicating and Mobile Systems: The pi-Calculus. Cambridge University

Press, Cambridge, UK, 1999.

Pathway Logic 35

36. F. Nielson, H. R. Nielson, C. Priami, and D. Rosa. Control flow analysis for bioambients. In
BioConcur, 2003.

37. Gh. Päun. Membrane Computing. An Introduction. Springer-Verlag, 2002.
38. J. L. Peterson. Petri Nets: Properties, analysis, and applications. Prentice-Hall, 1981.
39. C. A. Petri. Introduction to general net theory. In Brauer, W., editor, Net Theory and Ap-

plications, Proceedings of the Advanced Course on General Net Theory of Processes and
Systems, Hamburg, 1979, volume 84 of LNCS, pages 1–19, Berlin, Heidelberg, New York,
1980. Springer-Verlag.

40. C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic name-passing
calculus to representation and simulation of molecular processes. Information Processing
Letters, 80:25–31, 2001.

41. M.J. Prez-Jimnez and F.J. Romero-Campero. Modelling EGFR signalling cascade using
continuous membrane systems. In G. Plotkin, editor, Proceedings of the Third International
Conference on Computational Methods in System Biology, 2005.

42. V. N. Reddy, M. N. Liebmann, and M. L. Mavrovouniotis. Qualitative analysis of biochem-
ical reaction systems. Computational Biological Medicine, 26:9–24, 1996.

43. A. Regev, E. Panina, W. Silverman, L. Cardelli, and E. Shaprio. Bioambients: An abstraction
for biological compartments, 2004.

44. A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of biochemical
processes using the pi-calculus process algebra. In Pacific Symposium on Biocomputing,
volume 6, pages 459–470. World Scientific Press, 2001.

45. Karsten Schmidt. LoLA: A Low Level Analyser. In Mogens Nielsen and Dan Simpson,
editors, Application and Theory of Petri Nets, 21st International Conference (ICATPN 2000),
volume 1825 of Lecture Notes in Computer Science, pages 465–474. Springer, 2000.

46. R. Seger and E. G. Krebs. The mapk signaling cascade. FASEB J., 9(9):726–735, 1995.
47. N. Shankar. Symbolic analysis of transition systems. In Proceedings of the International

Workshop on Abstract State Machines, Theory and Applications, pages 287–302. Springer,
2000.

48. M.-O. Stehr. A rewriting semantics for algebraic nets. In C. Girault and R. Valk, editors,
Petri Nets for System Engineering – A Guide to Modelling, Verification, and Applications.
Springer-Verlag, 2000.

49. C. Talcott, S. Eker, M. Knapp, P. Lincoln, and K. Laderoute. Pathway logic modeling of
protein functional domains in signal transduction. In Proceedings of the Pacific Symposium
on Biocomputing, January 2004.

50. Carolyn Talcott. Formal executable models of cell signaling primitives. In Tiziana Margaria,
Anna Philippou, and Bernhard Steffen, editors, 2nd International Symposium On Leverag-
ing Applications of Formal Methods, Verification and Validation ISOLA06, pages 303–307,
2006.

51. Carolyn Talcott. Symbolic modeling of signal transduction in pathway logic. In L. F. Perrone,
F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, editors, 2006 Winter
Simulation Conference, pages 1656–1665, 2006.

52. Carolyn Talcott and David L. Dill. Multiple representations of biological processes. Trans-
actions on Computational Systems Biology, 2006.

53. Ashish Tiwari. Abstractions for hybrid systems. Formal Methods in Systems Design,
32(1):57–83, 2008.

54. Ashish Tiwari, Carolyn Talcott, Merrill Knapp, Patrick Lincoln, and Keith Laderoute. An-
alyzing pathways using sat-based approaches. In Hirokazu Anai, Katsuhisa Horimoto, and
Temur Kutsia, editors, Algebraic Biology 2007, volume 4545 of LNCS, pages 155–169, 2007.

55. Ionela Zevedei-Oancea and Stefan Schuster. Topological analysis of metabolic networks
based on Petri net theory. In Silico Biology, 3(0029), 2003.

