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Abstract. A commonly used language for representing knowledge about
a biological process is that of reaction networks. How does one understand
such generic networks and answer queries using them? In this paper,
we present a novel approach based on translation of generic reaction
networks to Boolean weighted MaxSAT. The Boolean weighted MaxSAT
instance is generated by encoding the basic meaning of a reaction network
by boolean clauses and assigning weights to these clauses based on the
relative importance of the meaning they capture. The important feature
of this translation is that it uses reactions, rather than the species, as
the boolean variables. Existing weighted MaxSAT solvers are used to find
maximum weight assignments for the generated clauses. This method of
analyzing reaction networks is generic, flexible and scales to large models
of reaction networks. We present a few case studies to validate our claims.

1 Introduction

A network of reactions is a convenient way to represent knowledge about a
biological process. Each reaction converts some reactants into products in the
presence of certain other molecules. A reaction can be modeled in various ways. If
detailed information about its dynamics is available, then differential equations
can be written that describe the dynamics of the reaction. Unfortunately, this
information is not always available, especially in the case where the reaction is
a biochemical reaction. Even when it is available, it is not available for each of
the thousands of reactions that constitute a network.

In the absence of validated dynamical models, reaction networks can be stud-
ied as discrete models. Discrete models are obtained by abstracting time to a
before-after relationship. In this context, a reaction can be seen as a discrete
state transition, and a reaction network is then simply a discrete state transi-
tion system. For instance, a reaction can be thought of as a Petri net transition,
and a reaction network as a Petri net.

A naive discrete model, wherein the state consists of the number of molecules
of each species, has a horrendously huge state space. Any kind of analysis on
such models is infeasible–both in theory and in practice. In theory, for instance,
Petri net reachability is decidable, but with no known upper-bound. In practice,
when analyzing systems containing just 100 total molecules of 4 different species,
the state space size is 4100.

To overcome the state space problem, several simpler models are considered.
For instance, boolean models abstract species to being either present or absent.



Other qualitative abstractions, such as absent, present in low quantities, and
present in large quantities are also possible.

In this paper, we present a new scalable approach for analyzing large reaction
networks. There are three main features in our approach. First, it is based on
qualitatively abstracting the reactions into two states–on and off. This is dual
to the more conventional approach where the presence or absence of molecu-
lar species, and not reactions, is used to define the state of the system [4, 8, 9].
Second, it uses a boolean MaxSat as its backend engine. There is a generic trans-
lation from reaction networks to boolean MaxSat instances. Third, it is flexible.
It performs several different types of analyses. Based on the type of analysis, dif-
ferent MaxSat instances are generated. Moreover, there is additional flexibility
in that, apart from the boolean constraints generated for generic reaction net-
works, specific boolean constraints can be added for reaction networks encoding
specific aspects, such as signaling pathways, or transcriptional regulation.
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Fig. 1. A simple network with competing rules

Consider, for example, the very simple network1 shown in Figure 1. This
network consists of 4 reactions called ρ1, ρ2, ρ3 and ρ4. We will use this network
as a running example in the paper.

ρ1: Tsc2 Akt-act−→ Tsc2-deact

ρ2: Tsc2
Ampk-act−→ Tsc2-act

ρ3: Rheb-act Tsc2-act−→ Rheb-deact

ρ4: Mtor Rheb-act−→ Mtor-act

It is not immediately obvious how to understand even this simple network.
Using the approach described in this paper, all possible “steady-state” behaviors
of the above network can be computed. For this example, the tool computes two

1 This is not necessarily biologically accurate.
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possible behaviors. Either Akt-act is present, deactivating Tsc2, while Mtor gets
activated by Rheb-act (Reactions 1 and 4 are “on”); or, Ampk-act is present,
activating Tsc2, which in turn deactivates Rheb-act (Reactions 2 and 3 are
“on”). The important point here is that the steady-state behavior is thought
of a subset of reactions that can be consistently “on”, as opposed to the tradi-
tional viewpoint where steady-state refers to species reaching some equilibrium
concentrations.

As mentioned earlier, our approach can perform different kinds of analyses.
We can specify an initial dish consisting of some of the species and ask the tool to
identify all possible behaviors constrained to the given initial dish. In the above
example, if the initial dish only contains Tsc2, Ampk-act, Rheb-act and Mtor,
then our tool identifies that the second and third reactions can be “on”, and
that the other option, where reactions 2 and 4 are “on” is less likely. Similarly,
target species can be specified, and the tool will generate paths (scenarios) that
will produce the target species. Each such scenario will be assigned a weight
indicating its relative likelihood.

1.1 Motivation

The definition of “steady-state” behavior we use in this paper is unusual. A
steady-state is identified as a subset of reactions that can be consistently “on”.
Traditionally, a steady-state is identified by the equilibrium concentrations of all
species in the network. One of the strong motivations for this definition is that
signaling pathways are best understood in this way. More than the individual
species concentrations, it is the chain of reactions that capture how information
flows from the cell membrance to effect downstream activities in a cell. This
chain of reactions corresponds directly to the notion of a steady-state in our
approach.

The different reactions in the steady-state chain of reactions will, in reality,
be temporally separated. While certain phosphorylation activity may occur in
a few minutes after a cell is hit by ligands, other downstream activities may
occur much later. In our approach, we identify the whole chain as one possible
steady-state behavior of the reaction network. The complete chain of reactions
may never simultaneously be “on” in reality. However, they are still useful in
understanding the function of a given complex reaction network.

The approach based on translation to MaxSat is motivated by the need for
flexibility. Reaction networks have slightly different meaning in different con-
texts. Metabolic pathways, signaling pathways, and transcriptional regulation
networks work on different notions of species and reactions. Our basic constraints
attempt to capture the minimal common meaning that can be ascribed to any
such network. The weights on the constraints give flexibility in making certain
constraints harder than others in different contexts.

Finally, it should be mentioned that the technology for solving SAT and
MaxSAT problems has made significant advances in recent years and problems
with thousands of boolean variables and even more clauses are routinely solved
in matter of seconds. We have used our tool on the HumanCyc database of
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metabolic pathways (containing over a thousand reactions) and we can asnwer
queries in a few seconds.

2 Preliminaries

In this section, we formalize our terminology. A species is a generic name used
to denote any entity, such as a molecule, ion, protein, enzyme, ligand, receptor,
complex, or a postranscriptionally modified form of a protein. We do not differ-
entiate between these different roles and just formally identify a species with a
unique name. The set of all species will be denoted by S. A reaction consists of
a set of reactants, a set of modifiers, and a set of products. Thus, a reaction ρ
is a 3-tuple 〈R,M,P 〉, where R,M,P are pairwise disjoint subsets of S. Given
a reaction ρ, we denote its set of reactants, modifiers, and products by R(ρ),
M(ρ), and P (ρ) respectively.

A network N is a collection of reactions. A network instance is a network
together with an optional set of input species, a set of forbidden species, and a
set of target species.

A pathway is a special kind of network. Informally, a pathway contains a
related set of reactions that can be consistently switched “on”. The following
sections will formally define the constraints we impose to identify pathways.

3 Biochemical Networks to Boolean SAT

In this section, we describe the procedure that generates a set of boolean con-
straints (clauses) from a network. Later in this section, we describe the additional
constraints that are generated from a network instance. The idea behind the
translation is that a solution (satisfying assignment) of the boolean constraints
will represent a feasible behavior of the network (or network instance).

The key aspect of our boolean encoding is that we introduce a boolean vari-
able for each reaction (and not for each species). The reason for this choice will
be discussed later. If N = {ρ1, ρ2, . . . , ρn} is a biochemical network, we generate
boolean constraints over n boolean variables b1, . . . , bn, where the i-th boolean
variable bi represents whether the i-th reaction ρi is “on” or “off”. The boolean
constraints are generated using a minimalistic approach: we encode only the
very basic and least contentious interpretations of the reactions in N as boolean
constraints.

3.1 Mutual Promotion

The first set of clauses encode the following rule:

If a reaction is “on”, then for each of its reactants (modifiers), there is
atleast one reaction “on” that produces that reactant (modifier).
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For a species s ∈ S, let producers(s) denote the set of reactions that have s in
their set of products.

producers(s) = {ρ ∈ N : ρ = 〈R,M,P 〉, s ∈ P}

Now, for each reaction ρi ∈ N , we generate the following constraint:

bi ⇒
∧

s∈R(ρi)

∨
ρj∈producers(s)

bj (1)

Similarly, we have the following constraint that says there is a producer “on” for
each modifier of ρi.

bi ⇒
∧

s∈M(ρi)

∨
ρj∈producers(s)

bj (2)

In our running example, we have 4 reactions. Hence, we have 4 boolean vari-
ables b1, b2, b3, b4. Note that Reaction ρ3 requires the modifier Tsc2-act, which is
produced by Reaction ρ2. Hence, we generate the constraint b3 ⇒ b2 of Type 2.
Apart from Tsc2-act, none of the other reactants or modifiers have any producers
in this network. We will discuss this issue in Section 3.3.

3.2 Competitive Inhibition

The second set of clauses encode the inhibitory effect that a reaction may have
on another that shares a reactant with it.

If a reaction is “on”, then for each of its reactants, each of the other
reactions that consume that reactant are “off”.

For a species s ∈ S, let consumers(s) denote the set of reactions that have s in
their set of reactants.

consumers(s) = {ρ ∈ N : ρ = 〈R,M,P 〉, s ∈ R}

Now, for each reaction ρi ∈ N , we generate the following constraint:

bi ⇒
∧

s∈R(ρi)

∧
ρj∈(consumers(s)−{ρi})

¬bj (3)

The above constraints encode the inhibitory effect one reaction has on an-
other that shares a reactant with it. We also have similar constraints encoding
competitive inhibition between reactions through a species that is a reactant in
one reaction and a modifier in another.

bi ⇒
∧

s∈M(ρi)

∧
ρj∈(consumers(s))

¬bj (4)

If two reactions share a modifier, then clearly one reaction does not inhibit
the other.

In our running example, Reaction ρ1 and Reaction ρ2 share a common re-
actant, namely Tsc2. Hence, we generate the Type 3 constraints b1 ⇒ ¬b2

and b2 ⇒ ¬b1. Similarly, Reaction ρ3 and Reaction ρ4 compete for Rheb-act—
Reaction ρ3 uses it as a reactant, whereas Reaction ρ4 requires it as a modifier.
Hence, we generate the Type 4 constraint b4 ⇒ ¬b3.
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3.3 Completing the Network

Biological databases of biochemical networks are often incomplete. They often
use species that are not created by any reaction in the network. In the running
example, Tsc2, Akt-act, Ampk-act, Rheb-act, and Mtor are all species with no
producers. The presence of such species is a problem for our encoding since, to
be “on”, a reaction requires all of its reactants (and modifiers) to be produced by
some other reaction. If there are no producers of certain species, then reactions
using that species can never be turned on.

We solve this problem by adding dummy reactions that create species that
have no producers. Specifically, for each species s such that producers(s) =
∅, we add a new reaction ρ = 〈R,M,P 〉, where R = ∅, M = ∅, and P =
{s}. We perform this step as a preprocessing step. As a result, these additional
dummy reactions are taken into account when the constraints described above
are generated.

We also encode the fact that these dummy reactions are different from other
reactions by adding boolean constraints that force these reactions to be “off”.
For each dummy reaction ρ, if b is the corresponding boolean variable, then we
add the following clause

¬b (5)

This constraint says that the dummy reaction, and hence the corresponding
species, should preferably not be used. In Section 4, we will discuss how this
preference is effected by means of weights.

In the running example, for each of the 6 species that have no producers, we
add 6 new dummy reactions. Note that the addition of these 6 reactions will be
reflected appropriately in the generated Type 1 and Type 2 constraints.

3.4 Optional Clauses

In case of analyzing a network instance, we may optionally have additional infor-
mation about the input species, forbidden species, and target species. We now
show how these are incorporated into the constraints.

Initial Species The set of species specified as initial are assumed to be present.
If a set of initial species is specified, then the preprocessor adds a dummy reaction
that produces all the initial species. Specifically, if Sinit is the set of initial
species, then the preprocessor will add a dummy reaction ρ = 〈R,M,P 〉, where
R = M = ∅ and P = Sinit . Furthermore, the boolean variable b corresponding
to this reaction is forced to be “on” by simply adding a clause b in the generated
set of boolean constraints.

Target Species The set of target species is a list of species that should be
generated by pathways generated by the tool. If a set of target species is specified,
then the boolean constraint generator adds additional constraints that say that
for each target species, there is at least one producer of it turned “on”.
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For each species s in the set of target species, we add the constraint,∨
ρi∈producers(s)

bi (6)

Forbidden Species The set of forbidden species specifies the set of species that
should not be used in any pathway (behavior) generated by the system. If this
set is provided, then the following additional boolean constraint is generated for
each species s in this forbidden set, ∧

ρi∈producers(s)

¬bi (7)

Forward Propagation The constraints that force forward firing of reactions
are optional, and are generated only when the user explicitly asks for them. The
forward propagation rules essentially say that for each species s, if a producer of
s is “on”, then some consumer of s is also “on”. In other words, for each species
s, the following constraint is generated,∨

ρi∈producers(s)

bi ⇒
∨

ρj∈consumers(s)

bj (8)

3.5 Mode Based Constraints

Given the above constraints, we can try to turn “on” as many reactions as
possible, or turn “on” as few reactions as possible. These two possibilities are
encoded as two different set of constraints.

If we wish to turn “on” as many reactions as possible (for example to find
stable states), then, for each reaction ρi ∈ N , we add the clause

bi (9)

to the set of constraints. This clause simply says that reaction ρi is “on”.
If we wish to turn “on” as few reactions as possible (say to find minimal

pathways), then, for each reaction ρi ∈ N , we add the clause

¬bi (10)

to the set of constraints.

4 Biochemical Pathway to Boolean Max-SAT

The constraints outlined above need not have equal weight. Some can be more
important than others. This is captured by adding a weight (number) to each
constraint that indicates its relative importance.
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In particular, note that Type 9 constraints (and Type 10 constraints) are
just hints that say reactions should be turned “on” (respectively “off”). These
constraints are weaker than the other constraints that encode mutual promotion
or competitive inhibition.

The choice of weights for each constraint gives additional flexibility that can
be used to encode other biologically relevant information that is not generic to
all biochemical processes.

In the generic translation, constraints of Type 1, Type 2, and Type 3, are
each given a very large weight W . The constraint of Type 4 is given weight ap-
proximately equal to W/2. The constraint saying that species with no producers
should not be used (Type 5 constraints) is given intermediate weight (approx-
imately W/(k + 1), where k is the total number of species with no producers).
Whenever present, the constraints for creation of target species and forcing for-
ward propagation (Type 6 and Type 8 constraints) are given weight W .

The constraints that specify the hints (Type 9 and Type 10 constraints) are
given weight 1.

4.1 Weighted MaxSAT

A solution is a mapping from the boolean variables to {true, false}. In our con-
text, a solution maps reactions to either “on” or “off”. Under a given solution,
constraints also evaluate to either true or false.

Each solution can be associated with a weight: the sum of the weights of all
the constraints that are made true by that solution. A weighted MaxSAT solver
finds a solution that has the maximum weight.

In our running example, ignoring the dummy reactions and optional clauses
for simplicity, we had generated first four clauses shown below. We now add
new clauses that say each reaction should preferably be turned “on” and assign
weights to each clause based on the discussion above.

c1 : b3 ⇒ b2 w1 = 10 Section 3.1
c2 : b1 ⇒ ¬b2 w2 = 10 Section 3.2
c3 : b2 ⇒ ¬b1 w3 = 10 Section 3.2
c4 : b4 ⇒ ¬b3 w3 = 5 Section 3.2
c5 : b1 w5 = 1 Section 3.5
c6 : b2 w6 = 1 Section 3.5
c7 : b3 w7 = 1 Section 3.5
c8 : b4 w8 = 1 Section 3.5

For this set of constraints, the solution b1 = b4 = true, b2 = b3 = false has
weight 37 (since only clauses c6 and c7 are violated). The weight of the solution
b1 = b4 = false, b2 = b3 = true is also 37 (since this solution makes clauses c5

and c8 false). These two are the maximum weight solutions and they correspond
exactly to the two scenarios described in Section 1.
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Fig. 2. Selected reactions from the sporulation initiation network of B. Subtilis. The
reactions are represented using standard Petri net notation and show the main phos-
phorelay.

5 Implementation and Case Studies

We have implemented a tool based on the technique described in this paper.
As a backend MaxSAT solver, we use Yices [14, 3], which is a more general
satisfiability modulo theory solver. The input format for our tool is a network
or network instance described in a very simple intermediate language. We also
have several front-ends that convert from other formats to our intermediate
language format. For example, we have front-ends for Pathway Logic [12, 11]
and BioCyc [5, 7].

In this section, we describe the results obtained using this tool on some
specific networks.

5.1 Sporulation Initiation in B.Subtilis

Bacillus subtilis is considered a model organism for Gram-positive bacteria and
has been extensively studied in the laboratory. It is an endospore-forming bac-
teria most commonly found in the soil. Endospore formation is initiated when
nutrients become limiting and is an adaptive response of the bacteria to their
environment.

Sporulation is a one-way decision and once the decision is made, the cell
undergoes changes which take 6 to 8 hours in most organisms. If conditions
improve in the meantime, then the cell will be at a disadvantage. Hence the
decision to initiate sporulation is important to the organism and is subject to a
variety of control.

The formation of spores in Bacillus subtilis is a developmental process under
genetic control. The decision to either grow vegetatively or sporulate is regulated
by the state of phosphorylation of the Spo0A transcription factor [10, 6]. Spo0A
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ID Reactants +Modifiers −→Products

r1 +(Spo0AP, NoSinR4) −→SinI
r2 +(Spo0AP, NoAbrB6, NoHpr)−→SinI
r3 SinI, SinR4 + −→SinISinR, NoSinR4
r4 SinR + −→SinR4
r5 +(NoSinR4, sigmaH, NoSoj) −→Spo0A
r6 +(NoAbrB6) −→Spo0E
r7 AbrB, AbrB6 +(Spo0AP) −→NoAbrB6
r8 +(NoSpo0AP) −→AbrB
r9 +(NoAbrB6) −→AbrB
r10 AbrB, NoAbrB6+ −→AbrB6
r11 NoHpr +(AbrB6) −→Hpr
r12 Hpr +(NoAbrB6) −→NoHpr
r13 +(ComAP) −→RapA
r14 RapA +(Spo0AP, Hpr) −→
r15 RapA +(HighCellDensity) −→RapAPep5
r16 KinA +(NoKipI) −→KinAP
r17 KinAP, Spo0F + −→Spo0FP, KinA
r18 Spo0FP, RapA + −→Spo0F
r19 Spo0FP, Spo0B + −→Spo0BP, Spo0F
r20 Spo0A, Spo0BP+(NoSoj) −→Spo0AP, Spo0B
r21 Spo0AP, Spo0E + −→Spo0A, NoSpo0AP
r22 +(sigmaH, sigmaA) −→Spo0F
r23 +(sigmaA) −→Spo0B
r24 KipI +(NoFood, NoNitrogen) −→NoKipI

Table 1. The list of reactions modeling the sporulation initiation network.

obtains its phosphate through a phosphorylation pathway (see Figure 2), the
so-called phosphorelay, in which at least three histidine protein kinases transfer
phosphate to the relay protein, Spo0F, then to Spo0B, and finally to Spo0A
(represented by ReactionIDs r17, r19, and r20 in Table 1). In addition, the
phosphorylation state of Spo0A is modulated by specific phosphatases, such as
Spo0E, which dephosphorylates Spo0A-P, and RapA, which dephosphorylates
Spo0F-P (ReactionIDs r18, r21).

The SinI and SinR pair is a regulatory operon in the sporulation initiation
network. While SinR is a transcriptional regulator that represses spo0A tran-
scription, SinI disrupts the SinR tetramer through the formation of a SinI-SinR
heterodimer. This aspect, along with the logic regulating SinI transcription, is
encoded in ReactionIDs r1, r2, r3, and r4.

The activity of protein RapA is modulated by quorum sensing, the process
of sensing activity in neighboring cells and reacting in a cell-density-specific
fashion. Under high population density, RapA is inhibited by PhrA pentapeptide
(not modeled in the reactions). These aspects are captured in ReactionIDs r13,
r15. The protein kinase KinA is a sensor that initiates the phosphorelay and is
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modeled here by ReactionIDs r16, r17. Most of the remaining reactions encode
transcriptional regulation logic for different proteins.

On this simplified model of sporulation initiation, the tool implementing
the approach described in this paper can find possible stable behaviors of the
network. These behaviors are found as subsets of reactions in the network that
can be consistently “on”. The tool finds 3 different possibilities for the model
above.

– SinI is produced, and it binds to SinR, thus preventing it from repressing
spo0A. RapA is converted to RapAPep5, thus preventing it from dephos-
phorylating Spo0A-P. In the presence of stress signals, KipI is prevented
from inhibiting KinA from self-kinasing. The self-kinasing of KinA triggers
the phosphorelay, which leads to production of Spo0A-P, a precursor for
sporulation.

– In the second stable state scenario, RapA dephosphorylates Spo0F-P, thus
breaking the phosphorelay chain. Thus, there is no production of Spo0A-P.

– The third stable state scenario is similar to the first, except that Spo0E
dephosphorylates the produced Spo0A-P, thus using up the produced Spo0A-
P.

The three stable scenarios each make different assumptions about the environ-
ment. In our case, the environment consists of the species that are not created
by any of the reactions in the network. In the network above, HighCellDensity,
and NoFood, are two examples of input species.

The tool can also be used in the mode in which a desired target set of species
is specified (for example, Spo0A-P). In this case, the tool will generate the first
stable scenario above to show how Spo0A-P could be produced.

5.2 MAPK Signaling Network

The Mitogen-Activated Protein kinase (MAPK) network regulates several cellu-
lar processes, including the cell cycle machinery. The MAPK cascade communi-
cates signals from growth factors that bind receptor kinases to transcription and
other cellular processes [2]. A simplified model of this network, taken from [2],
can be encoded in our notation as shown in Table 2. The tool finds two stable
sets of behavior for this network.

– The positive feedback loop is active. In this case, either Grb2, Sos1, or PKC*
turns on Ras. This causes, in steps, the phosphorylation of Raf, MEK, and
Erk. Activated Erk causes production of AA*, which stimulates PKC.

– The negative feedback loops are active. In this case, protein phosphatase 2A
(PP2A) dephosphorylates both Raf* and Mek*, and MKP dephosphorylates
Erk*. MKP is created by transcription of MKP gene, and this is promoted
by Erk*.

The two stable solutions clearly identify the positive cycle and the multiple
negative cycles that break the positive cycle. The overall system behavior is
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ID Reactants+Modifiers −→Products

r1 Ras +(Grb2, Sos1) −→Ras*
r2 Ras +(PKC*) −→Ras*
r3 Raf +(Ras*) −→Raf*
r4 Raf* +(PP2A) −→Raf
r5 Mek +(Raf*) −→Mek*
r6 Mek* +(PP2A) −→Mek
r7 Erk +(Mek*) −→Erk*
r8 Erk* +(MKP) −→Erk
r9 +(Erk*, MKPgene)−→MKP
r10 AA +(Erk*, Ca) −→AA*
r11 PKC +(DAG, Ca, AA*) −→PKC*

Table 2. The list of reactions modeling the MAPK signaling network.

seen to be a result of the close interaction between the positive and negative
cycles.

We also used the detailed model of the MAPK signaling network from [1].
The total running time on the full network is of the order of a few seconds.

5.3 EGF Stimulation Network

In the Pathway Logic project [12, 11], a model of Egf stimulation is being devel-
oped by curating a network of biochemical reactions involved in mammalian cell
signaling from the literature. When a cell is stimulated by Egf, certain species
are experimentally observed to be present in the cell after its initial stimulation.
These observations can be used to validate the model by checking whether the
model predicts the observations. To carry out the validation, we started with a
network of about 400 reactions and created a network instance by adding ini-
tial and target species. Specifically, we started with a set of about 250 initial
species and 62 target species that are experimentally observed in response to
EGF stimulation.

When this network instance is analyzed by our tool, our tool attempts to
find a set of reactions that will create each of the target species using the initial
species and the reactions in the network. A “–no-assume” option tells the tool
to not assume any species not already specified in the initial set. (Recall that,
by default, species that have no producers can be assumed, with a moderate
penalty.)

The output of the tool indicated that it was not possible to find a solution
without violating one Type 3 and one Type 4 competitive inhibition constraints.
Specifically, the species (Frap1:Lst8)-CLc 2 is a reactant in two different reactions
that are both required to be “on” to create the target species. This causes a
Type 3 constraint to be violated. The Type 4 constraint that is violated is
caused by the species Src-CLi, which is used as a reactant in a reaction to create
2 a complex containing Frap1 and Lst8 located in the cytoplasm,CLc
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Fig. 3. A simple network with competing rules

Src-act-CLi, and it is also used as a modifier in the reaction that creates Cbl-
Yphos-CLi. This violation pointed out a typing error in specifying the reaction
rules which has been corrected. Figure 3 shows the pathways competing for
(Frap1:Lst8)-CLc in the context of the larger network.

Using our tool provided two valuable forms of feedback to the model devel-
oper. One was a form of meta analysis or type-checking that detected syntactic
problems with the model. (The first pass detected a number of inconsistencies
that were easily repaired.) The second was the identification of the point of
competition. Using the Pathway Logic Assistant [13] one can check whether a
given set of observations is predicted, singly or jointly. However if a prediction
fails there is no feedback as to the cause of failure. Using MaxSAT, candidate
conflicting constraints can be identified to guide the modeler.
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Starting with the discovered Type 3 violation and studying the subnetwork
connected to this reaction lead to two hypotheses: (1) (Frap1:Lst8)-CLc splits
into two populations one for each of the two competing reactions; (2) there is
a feedback loop that can reset the state of (Frap1:Lst8)-CLc and the system
oscillates between the two pathways. Experiments are ongoing to test these hy-
potheses.

6 Related Work

We compare here with work that is closer in spirit to our work, and do not men-
tion all the literature devoted to building various kinds of models and improving
understanding of specific biological phenomena, such as sporulation and MAPK
signaling.

Senachak et. al. [8] give a generic interpretation to a reaction network by
translating it to a graph. Strongly-connected components of the graph are related
to the pathways. The construction of the graph has some unusual steps, such
as cascading, that arise primarily because the authors use species as defining
the nodes of the graph. The main difference in our approach is that, in our
approach, the boolean variables correspond to reactions in the network. We
believe this leads to a much simpler and natural encoding of the “cascading”-
style constraints of [8].

7 Conclusion

We presented a new approach for analyzing biochemical reaction networks using
MaxSAT. The novelty here is that we make reactions central to the notion of a
steady-state behavior. A steady-state behavior is a subset of reactions that can
be mutually consistently “on”.

The attractiveness of our approach is that it is generic and applies to net-
works coming from different kinds of biological networks. Additionally, it is also
flexible and allows encoding of knowledge specific to certain kinds of networks
via suitable manipulation of the weights on the generic constraints.

The analysis approach is promising. Even for the largest networks we have
studied, the analysis takes at most a few seconds to compute answers.

Possible future work include studying quantitative variants of the boolean
constraints. Fortunately, our backend tool, Yices, supports reasoning over linear
arithmetic constraints. We can replace the use of boolean MaxSAT with MaxSAT
over arbitrary combination of boolean and linear arithmetic constraints.
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